Answer:
B is incorrect
Explanation:
Ocean are made of salt water which is undrinkable therefore they are not any type of drinking water source.
It’s aluminum because electrons and protons are basically the same thing just in different places on a electron cloud and the atomic number is 13 so I think it’s aluminum.
Answer:
It is basically a way of telling you how to solve for different variables in the equation d=m/v
Explanation:
A neutron has a neutral charge.
A proton is positive while an electron is negative. Neutrons have no charge.
94.0 L if the reaction takes place under STP.
<h3>Explanation</h3>
The molar mass of glucose C₆H₁₂O₆ is
12.01 × 6 + 1.008 × 12 + 16.00 × 16.00 = 180.16 g / mol.
126 grams of glucose will contain 126 / 180.16 = 0.69939 mol of C₆H₁₂O₆. (To avoid rounding errors, keep a couple more digits than necessary.)
6 moles of CO₂ will be produced when 1 mole of C₆H₁₂O₆ is consumed. 0.69939 moles of C₆H₁₂O₆ will give rise to 4.196 mol of CO₂.
Assuming that the reaction takes place under STP, where T = 0 °C = 273 K and P = 1 atm. Each mole of any ideal gas will occupy a volume of 22.4 liters. The 4.196 moles of CO₂ will occupy 4.196 × 22.4 = 94.0 L. (The least significant number given is 126 g, the mass of glucose. This number has three significant figures. Thus, round the result to three significant figures.)
The volume of CO₂ can be found using the ideal gas law if the condition isn't STP. For example, T = 25 °C = 297 K and P = 1.00 × 10⁵ will lead to a different volume. By the ideal gas law,
V = (n · R · T) / (P)
where
- V is the volume of the gas,
- n is the number of moles of gas particles,
- R is the ideal gas constant<em>,</em>
- P is the pressure on the gas,
- T is the absolute temperature of the gas (in degrees Kelvin.)
R = 8.314 × 10³ L · Pa / (K · mol)
Taking T = 297 K and P = 1.00 × 10⁵ Pa,
V = (4.196 × 8.314 × 10³ × 297 ) / (1.00 × 10⁵ ) = 104 L.