Answer:
where is the graph I can't see it how can I solve the problem if I don't see the graph can you show the graph please
<u>Answer:</u>
2N/cm
<u>Step-by-step explanation:</u>
According to the Hooke's Law, the force required to extend or compress a spring is directly proportional distance you can stretch it, which is represented as:

where,
is the force which is stretching or compressing the spring,
is the spring constant; and
is the distance the spring is stretched.
Substituting the given values to find the elastic constant
to get:




Therefore, the elastic constant is 2 Newton/cm.
Answer:
The sound travelled 516 meters before bouncing off a cliff.
Explanation:
The sound is an example of mechanical wave, which means that it needs a medium to propagate itself at constant speed. The time needed to hear the echo is equal to twice the height of the canyon divided by the velocity of sound. In addition, the speed of sound through the air at a temperature of 20 ºC is approximately 344 meters per second. Then, the height of the canyon can be derived from the following kinematic formula:
(1)
Where:
- Height, measured in meters.
- Velocity of sound, measured in meters per second.
- Time, measured in seconds.
If we know that
and
, then the height of the canyon is:



The sound travelled 516 meters before bouncing off a cliff.
(Direction) for the fact that it will continue having the momentum at the constant speed in which the engines turned off.