Answer:
Explanation:
<em>Assuming the triangle is a right triangle,</em>
the magnitude of R can be found using the Pythagorean theorem,
R = sqrt(9.7^2+6^2) = 11.41 m
The angle can be found by arctangent, which is
angle = atan(9.7/6) = 58.26 degrees.
Answer:
162.78 m/s is the most probable speed of a helium atom.
Explanation:
The most probable speed:

= Boltzmann’s constant =
T = temperature of the gas
m = mass of the gas particle.
Given, m = 
T = 6.4 K
Substituting all the given values :


162.78 m/s is the most probable speed of a helium atom.
Answer:
Please find the answer in the explanation
Explanation:
Given that a scientist conducting a field investigation records measurements of very low pressure and high relative humidity at the top of a mountain.
Since a weather map indicates that a warm front is approaching the mountain, according to the conventional current, the warm front is approaching because the weather must have been in higher relative humidity in cool air.
The warm front is approaching to replace it so that the cool air can conventionally replace the warmth air too.
The condition the scientists will most likely observe at the top of the mountain will be high relative humidity.
Inertia is defined as the property of matter by which causes it to resist changes in its state of motion such as changes in velocity. From the given options above, the option that has the greatest inertia would be option B. A jet airliner.
Answer:
0.47 N
Explanation:
Here we have a ball in motion along a circular track.
For an object in circular motion, there is a force that "pulls" the object towards the centre of the circle, and this force is responsible for keeping the object in circular motion.
This force is called centripetal force, and its magnitude is given by:

where
m is the mass of the object
is the angular velocity
r is the radius of the circle
For the ball in this problem we have:
m = 40 g = 0.04 kg is the mass of the ball
is the angular velocity
r = 30 cm = 0.30 m is the radius of the circle
Substituting, we find the force:
