Answer:

& 
Explanation:
Given:
- interior temperature of box,

- height of the walls of box,

- thickness of each layer of bi-layered plywood,

- thermal conductivity of plywood,

- thickness of sandwiched Styrofoam,

- thermal conductivity of Styrofoam,

- exterior temperature,

<u>From the Fourier's law of conduction:</u>

....................................(1)
<u>Now calculating the equivalent thermal resistance for conductivity using electrical analogy:</u>




.....................(2)
Putting the value from (2) into (1):


is the heat per unit area of the wall.
The heat flux remains constant because the area is constant.
<u>For plywood-Styrofoam interface from inside:</u>



&<u>For Styrofoam-plywood interface from inside:</u>



It depends how you want it to work do you want to take a picture oh yea and to do that you must create a account btw
Answer:
mass of the fish is 8.11 kg
Explanation:
As we know that the frequency of oscillation of spring block system is given as

here we know that the reading of scale varies from 0 to 155 N from length varies from x = 0 to x = 10 cm
Now we have


so now we have


so mass of the fish is 8.11 kg
45km/h * 0.5h= 22.5km
The car can travel 22.5km in 0.5 hours
Explanation:
It is given that,
Mass of the tackler, m₁ = 120 kg
Velocity of tackler, u₁ = 3 m/s
Mass, m₂ = 91 kg
Velocity, u₂ = -7.5 m/s
We need to find the mutual velocity immediately the collision. It is the case of inelastic collision such that,


v = -1.5 m/s
Hence, their mutual velocity after the collision is 1.5 m/s and it is moving in the same direction as the halfback was moving initially. Hence, this is the required solution.