They are incline hope this helps!
Answer:
v_f = 0.87 m/s
Explanation:
We are given;
F_avg = -17700 N (negative because it's backward)
m = 117 kg
Δt = 5.50 × 10^(−2) s
v_i = 7.45 m/s
Now, formula for impulse is given by;
I = F•Δt = - 17700 x 5.50 × 10^(−2) = - 973.5 kg.m/s
From impulse momentum theory, we know that;
Change in momentum of particle is equal to impulse.
Thus,
Δp = I = m•v_f - m•v_i
Thus,
-973.5= 117(v_f - 7.45)
Thus,
-973.5/117 = (v_f - 7.45)
-8.3205 + 7.45 = v_f
v_f = - 0.87 m/s
We'll take absolute value as;
v_f = 0.87 m/s
Nearly equal the output work is greater than the input work because of friction.All machines use some amount of input work to overcome friction.The only way to increase the work output is to increase the work you put into the machine.You cannot get more work out of a machine than you put into it.
Answer:
I’m so sorry I tried solving it but I don’t understand it can you explain the question a little bit more ty
Explanation:
Explanation:
Initial energy = final energy + work done by friction
PE = PE + KE + W
mgH = mgh + 1/2 mv² + W
(800)(9.8)(30) = (800)(9.8)(2) + 1/2 (800) v² + 25000
v = 22.1 m/s
Without friction:
PE = PE + KE
mgH = mgh + 1/2 mv²
(800)(9.8)(30) = (800)(9.8)(2) + 1/2 (800) v²
v = 23.4 m/s