I had this same question on one of are worksheets is D I can’t really explain it but the answer is D
Answer:
The pH of the buffer solution = 8.05
Explanation:
Using the Henderson - Hasselbalch equation;
pH = pKa₂ + log ( [HPO₄²-]/[H₂PO4⁻]
where pKa₂ = -log (Ka₂) = -log ( 6.1 * 10⁻⁸) = 7.21
Concentration of OH⁻ added = 0.069 M (i.e. 0.069 mol/L)
[H₂PO4⁻] after addition of OH⁻ = 0.165 - 0.069 = 0.096 M
[HPO₄²-] after addition of OH⁻ = 0.594 + 0.069 = 0.663 M
Therefore,
pH = 7.21 + log (0.663 / 0.096)
pH = 7.21 + 0.84
pH = 8.05
Answer:
the compound contains C, H, and some other element of unknownidentity, so we can’t calculate the empirical formula
Explanation:
Mass of CO2 obtained = 3.14 g
Hence number of moles of CO2 = 3.14g/44.0 g = 0.0714 mol
The mass of the carbon in the sample = 0.0714 mol × 12.0g/mol = 0.857 g
Mass of H2O obtained = 1.29 g
Hence number of moles of H2O = 1.29g/18.0 g = 0.0717 mol
The mass of the carbon in the sample = 0.0717 mol × 1g/mol = 0.0717 g
% by mass of carbon = 0.857/1 ×100 = 85.7 %
% by mass of hydrogen = 0.0717/1 × 100 = 7.17%
Mass of carbon and hydrogen = 85.7 + 7.17 = 92.87 %
Hence, there must be an unidentified element that accounts for (100 - 92.87) = 7.13% of the compound.
Answer:
Enthalpy is the amount of heat released or absorb. The total enthalpy can be found by subtracting the products' enthalpy by the reactants' enthalpy