Answer:
Speed; v = 17 m/s
Explanation:
We are given;
Radius; r = 110m
Angle; θ = 15°
Now, we know that in circular motion,
v² = rg•tanθ
Thus,
v = √(rg•tanθ)
Where,
v is velocity
r is radius
g is acceleration due to gravity
θ is the angle
Thus,
v = √(rg•tanθ) = √(110 x 9.8•tan15)
v = √(288.85)
v = 17 m/s
Answer:
Explanation:
Using the magnification formula.
Magnification = Image distance(v)/object distance(u) = Image Height(H1)/Object Height(H2)
M = v/u = H1/H2
v/u = H1/H2...1
3) Given the radius of curvature of the concave lens R = 20cm
Focal length F = R/2
f = 20/2
f = 10cm
Object distance u = 5cm
Object height H2= 5cm
To get the image distance v, we will use the mirror formula
1/f = 1/u+1/v
1/v = 1/10-1/5
1/v = (1-2)/10
1/v =-1/10
v = -10cm
Using the magnification formula
(10)/5 = H1/5
10 = H1
H1 = 10cm
Image height of the peg is 10cm
4) If u = 15cm
1/v = 1/f-1/u
1/v = 1/10-1/15
1/v = 3-2/30
1/v = 1/30
v = 30cm
30/15 = H1/5
15H1 = 150
H1/= 10cm
5) if u = 20cm
1/v = 1/f-1/u
1/v = 1/10-1/20
1/v = 2-1/20
1/v = 1/20
v = 20cm
20/20 = H1/5
20H1 = 100
H1 = 5cm
6) If u = 30cm
1/v = 1/f-1/u
1/v = 1/10-1/30
1/v = 3-1/30
1/v = 2/30
v = 30/2 cm
v =>15cm
15/30 = Hi/5
30H1 = 75
H1 = 75/30
H1 = 2.5cm
Answer:
a. 21.68 rad/s b. 30.78 m/s c. 897 rev/min² d. 1085 revolutions
Explanation:
a. Its angular speed in radians per second ω = angular speed in rev/min × 2π/60 = 207 rev/min × 2π/60 = 21.68 rad/s
b. The linear speed of a point on the flywheel is gotten from v = rω where r = radius of flywheel = 1.42 m
So, v = rω = 1.42 m × 21.68 rad/s = 30.78 m/s
c. Using α = (ω₁ - ω)/t where α = angular acceleration of flywheel, ω = initial angular speed of wheel in rev/min = 21.68 rad/s = 207 rev/min, ω₁ = final angular speed of wheel in rev/min = 1410 rev/min = 147.65 rad/s, t = time in minutes = 80.5/60 min = 1.342 min
α = (ω₁ - ω)/t
= (1410 - 207)/(80.5/60)
= 60(1410 - 207)/80.5
= 60(1203)80.5
= 896.65 rev/min² ≅ 897 rev/min²
d. Using θ = ωt + 1/2αt²
where θ = number of revolutions of flywheel. Substituting the values of the variables from above, ω = 207 rev/min, α = 896.65 rev/min² and t = 80.5/60 min = 1.342 min
θ = ωt + 1/2αt²
= 207 × 1.342 + 1/2 × 896.65 × 1.342²
= 277.725 + 807.417
= 1085.14 revolutions ≅ 1085 revolutions