Answer:
a single-replacement reaction replaces one element for another in a compound. A double-replacement reaction exchanges the cations, or the anions, of two ionic compounds.
Answer:
It is both accurate and precise.
Explanation:
Precision and accuracy are two different terms used to describe data or measurements. Accuracy refers to how close a set of measurements/experimental values is to an accepted or correct value while Precision refers to how close a series of experimental values are to one another.
In the given set of data in the question below, the Correct Value is 59.2 while the experimental values are as follows;
Trial 1: 58.7
Trial 2: 59.3
Trial 3: 60.0
Trial 4: 58.9
Trial 5: 59.2
Based on comparison, it can be observed that these experimental values are close to the correct value (59.2). Hence, they are said to be ACCURATE. Also, the experimental values are close to one another, hence, they are said to be PRECISE.
Therefore, the data set is both accurate and precise.
most metals conduct electricity and are very dull to the look. most metals are toxic if eaten and are hard.
aluminum is a type of metal they is softer than the opther and conducts eletricty like a boss.
nickel on the opther hand is also a metal but does not conduct a lot of electricy.
metals can be bent and others can break,
Answer:

Explanation:
Because 3.005 grams of potassium lactate is added to 100. mL of solution, its concentration is:
![\displaystyle \begin{aligned} \left[ \text{KC$_3$H_$_5$O$_3$}\right] & = \frac{3.005\text{ g KC$_3$H_$_5$O$_3$}}{100.\text{ mL}} \cdot \frac{1\text{ mol KC$_3$H_$_5$O$_3$}}{128.17 \text{ g KC$_3$H_$_5$O$_3$}} \cdot \frac{1000\text{ mL}}{1\text{ L}} \\ \\ &= 0.234\text{ M}\end{aligned}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cbegin%7Baligned%7D%20%5Cleft%5B%20%5Ctext%7BKC%24_3%24H_%24_5%24O%24_3%24%7D%5Cright%5D%20%20%26%20%3D%20%5Cfrac%7B3.005%5Ctext%7B%20g%20KC%24_3%24H_%24_5%24O%24_3%24%7D%7D%7B100.%5Ctext%7B%20mL%7D%7D%20%5Ccdot%20%5Cfrac%7B1%5Ctext%7B%20mol%20KC%24_3%24H_%24_5%24O%24_3%24%7D%7D%7B128.17%20%5Ctext%7B%20g%20KC%24_3%24H_%24_5%24O%24_3%24%7D%7D%20%5Ccdot%20%5Cfrac%7B1000%5Ctext%7B%20mL%7D%7D%7B1%5Ctext%7B%20L%7D%7D%20%5C%5C%20%5C%5C%20%26%3D%200.234%5Ctext%7B%20M%7D%5Cend%7Baligned%7D)
By solubility rules, potassium is completely soluble, so the compound will dissociate completely into potassium and lactate ions. Therefore, [KC₃H₅O₃] = [C₃H₅O₃⁺]. Note that lactate is the conjugate base of lactic acid.
Recall the Henderson-Hasselbalch equation:
![\displaystyle \begin{aligned}\text{pH} = \text{p}K_a + \log \frac{\left[\text{Base}\right]}{\left[\text{Acid}\right]} \end{aligned}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cbegin%7Baligned%7D%5Ctext%7BpH%7D%20%3D%20%5Ctext%7Bp%7DK_a%20%2B%20%5Clog%20%5Cfrac%7B%5Cleft%5B%5Ctext%7BBase%7D%5Cright%5D%7D%7B%5Cleft%5B%5Ctext%7BAcid%7D%5Cright%5D%7D%20%5Cend%7Baligned%7D)
[Base] = 0.234 M and [Acid] = 0.500 M. We are given that the resulting pH is 3.526. Substitute and solve for p<em>Kₐ</em>:

In conclusion, the p<em>Kₐ </em>value of lactic acid is about 3.856.
Well, we need to find the ratio of Al to the other reactant.
Al:HCl = 1:3
--> this means that for every 1 Al used, you have to use 3 HCl.
6*3 = 18 moles of HCl needed to fully react with 6 moles of Al. Since 13<18, HCL is the limiting reactant.
The ratio of HCl:AlCl = 3:1
13/3 = 4.3333...
The final answer is HCl is the limiting reactant with 4.3 moles of AlCl3 able to be produced.
Hope this helps!!! :)