1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vesnalui [34]
3 years ago
15

If a net force is greater than 0 Newtons, what is the force?

Physics
1 answer:
goldenfox [79]3 years ago
5 0

Answer:disequilibrium

Explanation:

When the net force is not zero it is called disequilibrium

You might be interested in
Write an expression for the magnitude of charge moved, Q, in terms of N and the fundamental charge e
NeTakaya

We have that for the Question "Write an expression for the <em>magnitude </em>of charge moved, Q, in terms of N and the fundamental charge e" it can be said its equation is

Q=\frac{E}{Nr^2}

       

From the question we are told

Write an expression for the <em>magnitude </em>of charge moved, Q, in terms of N and the fundamental charge e

<h3>An Expression for the <em>magnitude </em>of charge moved</h3>

Generally the equation for the  <em>magnitude </em>of charge moved, Q   is mathematically given as

Q=\frac{E}{Nr^2}

Therefore

An expression for the <em>magnitude </em>of charge moved, Q, in terms of N and the fundamental charge e" it can be

 Q=\frac{E}{Nr^2}

 

For more information on this visit

brainly.com/question/16517842

3 0
2 years ago
Sound travels through air at 343 m/s,
sasho [114]

The sound wave will have traveled 2565 m  farther in water than in air.

Answer:

Explanation:

It is known that distance covered by any object is directly proportional to the velocity of the object and the time taken to cover that distance.

Distance = Velocity × Time.

So if time is kept constant, then the distance covered by a wave can vary depending on the velocity of the wave.

As we can see in the present case, the velocity of sound wave in air is 343 m/s. So in 2.25 s, the sound wave will be able to cover the distance as shown below.

Distance = 343 × 2.25 =771.75 m

And for the sound wave travelling in fresh water, the velocity is given as 1483 m/s. So in a time interval of 2.25 s, the distance can be determined as the product of velocity and time.

Distance = 1483×2.25=3337 m.

Since, the velocity of sound wave travelling in fresh water is greater than the sound wave travelling in air, the distance traveled by sound wave in fresh water will be greater.

Difference in distance covered in water and air = 3337-772 m = 2565 m

So the sound wave will have traveled 2565 m  farther in water than in air.

5 0
3 years ago
Find the mass of an object if a 40 N of force causes the object to accelerate at 5.5 m/s/s
Murrr4er [49]

Answer:

<h3>The answer is 8 kg</h3>

Explanation:

The mass of the object can be found by using the formula

m =  \frac{f}{a}  \\

f is the force

a is the acceleration

From the question we have

m =  \frac{40}{5}  \\

We have the final answer as

<h3>8 kg</h3>

Hope this helps you

7 0
3 years ago
You serve a volleyball with a mass of 2.1 kg. The ball leaves your hand at 30 m/s. What is the kinetic energy (KE) of the volley
FinnZ [79.3K]

awnser :

Explanation:

8 0
2 years ago
Read 2 more answers
Consider an electron with charge −e and mass m orbiting in a circle around a hydrogen nucleus (a single proton) with charge +e.
alexandr1967 [171]

Answer:

v=\sqrt{k\frac{e^2}{m_e r}}, 2.18\cdot 10^6 m/s

Explanation:

The magnitude of the electromagnetic force between the electron and the proton in the nucleus is equal to the centripetal force:

k\frac{(e)(e)}{r^2}=m_e \frac{v^2}{r}

where

k is the Coulomb constant

e is the magnitude of the charge of the electron

e is the magnitude of the charge of the proton in the nucleus

r is the distance between the electron and the nucleus

v is the speed of the electron

m_e is the mass of the electron

Solving for v, we find

v=\sqrt{k\frac{e^2}{m_e r}}

Inside an atom of hydrogen, the distance between the electron and the nucleus is approximately

r=5.3\cdot 10^{-11}m

while the electron mass is

m_e = 9.11\cdot 10^{-31}kg

and the charge is

e=1.6\cdot 10^{-19} C

Substituting into the formula, we find

v=\sqrt{(9\cdot 10^9 m/s) \frac{(1.6\cdot 10^{-19} C)^2}{(9.11\cdot 10^{-31} kg)(5.3\cdot 10^{-11} m)}}=2.18\cdot 10^6 m/s

7 0
3 years ago
Other questions:
  • Darryl throws a basketball at the gym floor. The ball bounces once on the floor and comes to rest in his coach’s hands. At which
    6·1 answer
  • What is the young modulus of polythene?
    8·1 answer
  • A scientist finds a new life form. The life form is 2 meters tall. It makes its own food. It has tubes that carry food and water
    7·1 answer
  • HELP PLEASE!!!!! (Apex)
    11·2 answers
  • What is the change in velocity if the final velocity is 80 mph and the initial velocity is 20 mph? Is the object speeding up or
    7·1 answer
  • Which equation is used to calculate the magnetic force on a charge moving in a magnetic field? F = |q|vBcos F = |q|vBsin F = |q|
    15·2 answers
  • 1. Two loudspeakers are placed 4.5 m apart. They produce the same sounds, in step, at a frequency of 829 Hz. Constructive interf
    7·2 answers
  • Write your question here (Keep it simple and clear to get the best answer) a car accelerates uniformly from an initial velocity
    7·1 answer
  • In the image below, a free-body diagram represents the forces of several vehicles driving across a bridge. Assume that the bridg
    8·1 answer
  • Please help me on this physics, i got confused​
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!