Use VFR1 = VFR2 to discover the velocity at in the hose VFR =
A * V
D hose =10 * D nozzle, R hose = 5 * D nozzle
Area of a circle = πR^2
Area h=3.14*25*D^2 = 75.5D^2
(Radius=Diameter/2) area n = 3.14*(D^2/4) = .785D^2
Use VFR = VFR v2 = 0.4m/s
0.4*.785D^2 = 75.5*D^2* v1 D^2
= .314 =75.5*V1
v1 = 0.004m/s
Now we have the velocity, we can use Bernoulli's equation.
P1+ρgh1+ρV1^2 /2 = constant
There is no atmospheric pressure before so the P1= the gauge
pressure at the pump, let’s call the height of the hose 0m and the height of
the nozzle 1m so the is no ρgh1 Likewise, there is only atmospheric pressure at
the nozzle which is 100000 PA, and lastly the density ρ of water is 1000 KG/M^3
Pg + 1000*.004^2/2 = 100000+1000*9.8*1+ 1000*0.4^2/2
Pg + .008= 100000+9800+80
Pg+.008= 109880
Pg=109880.008 PA
The three main ideas related to Newton’s Second Law are as follows :
1.Acceleration is the result of
unbalanced forces.
2.A larger force makes a
proportionally larger acceleration.
3.Acceleration is inversely
proportional to mass.
Hope this helps!
This is definitely an observation as it is what you can see.
An inference is one you make by drawing conclusion. This is not an inference.
Iron filings sprinkled near a magnet arrange themselves into a pattern that illustrates the <span><span>magnetic field! Good Luck!</span> </span>