Answer:
D) resistance, resistivity
Explanation:
Resistance is a physical quantity that indicates the opposition of an object to conduct electricity, this quantity depends on different factors such as temperature, material, object length, among other things. The resistance of two objects of the same material may be different, because it depends on the specifications of the object.
On the other hand, resistivity is a more general quantity, since it is assigned to materials and depends only on the nature of the material and its temperature.
So the resistivity is related to the meterial rather than the object.
The answer is: Resistance is a property of an object while resistivity is a property of a material.
The net force is 270 N
Explanation:
We can solve this problem by using Newton's second law, which states that the net force on an object is equal to the product between its mass and its acceleration:

where
F is the force
m is the mass
a is the acceleration
In this problem, we have
m = 90.0 kg

Substituting, we find the net force on the object:

Learn more about Newton's second law:
brainly.com/question/3820012
#LearnwithBrainly
In a fluid, all the forces exerted by the individual particles combine to make up the pressure exerted by the fluid
Due to fundamental nature of fluids, a fluid cannot remain at rest under the presence of shear stress. However, fluids can exert pressure normal to any contacting surface. If a point in the fluid is thought of as a small cube, then it follows from the principles of equilibrium that the pressure on every side of this unit of fluid must be equal. but if this were not a case, the fluid would move in the directions of the resulting force, So the pressure on a fluid at rest is isotropic.
Hope This Helps :D <span />
To develop this problem we will start from the definition of entropy as a function of total heat, temperature. This definition is mathematically described as

Here,
Q = Total Heat
T = Temperature
The total change of entropy from a cold object to a hot object is given by the relationship,

From this relationship we can realize that the change in entropy by the second law of thermodynamics will be positive. Therefore the temperature in the hot body will be higher than that of the cold body, this implies that this term will be smaller than the first, and in other words it would imply that the magnitude of the entropy 'of the hot body' will always be less than the entropy 'cold body'
Change in entropy
is smaller than 
Therefore the correct answer is C. Will always have a smaller magnitude than the change in entropy of the cold object
Answer:
w= p∆v 50000 ( 0.55-0.40) and calculate and you get it