Answer:
a) y₂ = 49.1 m
, t = 1.02 s
, b) y = 49.1 m
, t= 1.02 s
Explanation:
a) We will solve this problem with the missile launch kinematic equations, to find the maximum height, at this point the vertical speed is zero
² =
² - 2 g (y –yo)
The origin of the coordinate system is on the floor and the ball is thrown from a height
y-yo =
=
- g t
t =
/ g
t = 10 / 9.8
t = 1.02 s
b) the maximum height
y- 44.0 =
² / 2 g
y - 44.0 = 5.1
y = 5.1 +44.0
y = 49.1 m
The time is the same because it does not depend on the initial height
t = 1.02 s
7.625 Newtons
work = force× distance
Newtons is an accepted value for force
so take the total 224 joules and decide by distance 32 meters to find force in Newtons
Answer:
A mirror that has a reflecting surface that is recessed inward is called concave mirror
Answer:
Three long wires are connected to a meter stick and hang down freely. Wire 1 hangs from the 50-cm mark at the center of the meter stick and carries 1.50 A of current upward. Wire 2 hangs from the 70-cm mark and carries 4.00 A of current downward. Wire 3 is to be attached to the meterstick and to carry a specific current, and we want to attach it at a location that results ineach wire experiencing no net force.
(a) Determine the position of wire 3.
b) Determine the magnitude and direction of current in wire 3
Explanation:
a) 

position of wire = 50 - 1.2
= 48.8cm
b) 

Direction ⇒ downward
Law of universal gravitation:
F = GMm/r²
F = gravitational force, G = gravitational constant, M & m = masses of the objects, r = distance between the objects
F is proportional to both M and m:
F ∝ M, F ∝ m
F is proportional to the inverse square of r:
F ∝ 1/r²
Calculate the scaling factor of F due to the change in M:
k₁ = 2M/M = 2
Calculate the scaling factor of F due to the change in m:
k₂ = 2m/m = 2
Calculate the scaling factor of F due to the change in r:
k₃ = 1/(4r/r)² = 1/16
Multiply the original force F by the scaling factors to obtain the new force:
Fk₁k₂k₃
= F(2)(2)(1/16)
= F/4