Answer:
The velocity of the photo electron is
.
Explanation:
Given that,
Supplied energy, 
Minimum energy of the electron to escape from the metal, 
We need to find the velocity of the photo electron. The energy supplied by the photon is equal to the sum of minimum escape energy and the kinetic energy of the escaping electron. So,

The formula of kinetic energy is given by :

So, the velocity of the photo electron is
.
We have here what is known as parallel combination of resistors.
Using the relation:

And then we can turn take the inverse to get the effective resistance.
Where r is the magnitude of the resistance offered by each resistor.
In this case we have,
(every term has an mho in the end)

To ger effective resistance take the inverse:
we get,

The potential difference is of 9V.
So the current flowing using ohm's law,
V = IR
will be, 0.0139 Amperes.
The battery will be full still a 8v bc of no time comparison
Answer: D. 5cm
Explanation:
Given the following :
Focal length (f) = - 6.0 cm
Height of object = 15.0cm
Distance of object from mirror (u) = 12.0cm
Height of image produced by the mirror =?
Firstly, we calculate the distance of the image from the mirror.
Using the mirror formula
1/f = 1/u + 1/v
1/v = 1/f - 1/u
1/v = 1/-6 - 1/12
1/v = - 1/6 - 1/12
1/v = (- 2 - 1) / 12
1/v = - 3 / 12
v = 12 / - 3
v = - 4
Using the relation :
(Image height / object height) = (- image distance / object distance)
Image height / 15 = - (-4) / 12
Image height / 15 = 4 / 12
Image height = (15 × 4) / 12
Image height = 60 / 12
Image height = 5cm
Explanation:
C.
Object A will require more force to be set in motion but will travel faster than object B.
2. true