Answer:
(a) 
(b) 
Explanation:
<u>Given:</u>
= The first temperature of air inside the tire = 
= The second temperature of air inside the tire = 
= The third temperature of air inside the tire = 
= The first volume of air inside the tire
= The second volume of air inside the tire = 
= The third volume of air inside the tire = 
= The first pressure of air inside the tire = 
<u>Assume:</u>
= The second pressure of air inside the tire
= The third pressure of air inside the tire- n = number of moles of air
Since the amount pof air inside the tire remains the same, this means the number of moles of air in the tire will remain constant.
Using ideal gas equation, we have

Part (a):
Using the above equation for this part of compression in the air, we have

Hence, the pressure in the tire after the compression is
.
Part (b):
Again using the equation for this part for the air, we have

Hence, the pressure in the tire after the car i driven at high speed is
.
<h2>Answer: It becomes an Ion
</h2>
When an atom has gained or lost electrons (negative charge), it becomes an ion.
In this sense:
<h2>I
ons are atoms that have <u>
gained or lost</u>
electrons in their electronic cortex.
</h2><h2>
</h2>
If a neutral atom <u>loses electrons</u>, it remains with an excess of positive charge and transforms into a positive ion or <u>cation</u>, whereas if a neutral atom <u>gains electrons</u>, it acquires an excess of negative charge and transforms into a negative ion or <u>anion</u>.
It is then how ions form bonds with other atoms differently depending on the number of electrons they have.
Answer:
Conservation of momentum.
Momentum is zero after collision, no direction or speed.
Explanation:
A 3rd harmonic of a tube open at both ends will have displacement antinodes at both ends.
In a tube of length L with two open ends, the longest standing wave has displacement antinodes (pressure nodes) at both ends. The fundamental or first harmonic is what it is known as. The second harmonic is the longest standing wave in a tube of length L with two open ends.
Learn more about harmonics here brainly.com/question/17315536
#SPJ10
According to Stefan-Boltzmann Law, the thermal energy radiated by a radiator per second per unit area is proportional to the fourth power of the absolute temperature. It is given by;
P/A = σ T⁴ j/m²s
Where; P is the power, A is the area in square Meters, T is temperature in kelvin and σ is the Stefan-Boltzmann constant, ( 5.67 × 10^-8 watt/m²K⁴)
Therefore;
Power/square meter = (5.67 × 10^-8) × (3000)⁴
= 4.59 × 10^6 Watts/square meter