To solve this problem it is necessary to apply the concepts related to the Period of a body and the relationship between angular velocity and linear velocity.
The angular velocity as a function of the period is described as

Where,
Angular velocity
T = Period
At the same time the relationship between Angular velocity and linear velocity is described by the equation.

Where,
r = Radius
Our values are given as,


We also know that the radius of the earth (r) is approximately

Usando la ecuación de la velocidad angular entonces tenemos que



Then the linear velocity would be,

x

The speed would Earth's inhabitants who live at the equator go flying off Earth's surface is 463.96
The sailboat is about 0.83m/sec (rounded to the nearest tenth).
To find speed, you would calculate distance over time.
100 meters/120 seconds = 0.83 meters per second
According to the plot, static friction force has a maximum magnitude of around 3.0 N, and kinetic friction has a magnitude of about 1.5 N.
The plot appears to be telling you the force required to get the yellow block moving along the table. If one applies less than 3.0 N of force, the block remains motionless. But as soon as it starts to slide, one need only apply 1.5 N of force to keep it moving (presumably at a constant speed).
Answer:
Canopus is more than 300 light years away from earth. This means it takes the light we see more than 300 years to reach us.