Answer:
[IBr] = 0.049 M.
Explanation:
Hello there!
In this case, according to the balanced chemical reaction:

It is possible to set up the following equilibrium expression:
![K=\frac{[IBr]^2}{[I_2][Br_2]} =0.0110](https://tex.z-dn.net/?f=K%3D%5Cfrac%7B%5BIBr%5D%5E2%7D%7B%5BI_2%5D%5BBr_2%5D%7D%20%3D0.0110)
Whereas the the initial concentrations of both iodine and bromine are 0.50 M; and in terms of
(reaction extent) would be:

Which can be solved for
to obtain two possible results:

Whereas the correct result is 0.0245 M since negative results does not make any sense. Thus, the concentration of the product turns out:
![[IBr]=2x=2*0.0249M=0.049M](https://tex.z-dn.net/?f=%5BIBr%5D%3D2x%3D2%2A0.0249M%3D0.049M)
Regards!
B, because water is changing its state from solid to liquid (it's fusion in portuguese, don't know in english), so while it's changing, water has 2 states at the same time.
Answer:
13.20
Explanation:
Step 1: Calculate the moles of Ba(OH)₂
The molar mass of Ba(OH)₂ is 171.34 g/mol.
0.797 g × 1 mol/171.34 g = 4.65 × 10⁻³ mol
Step 2: Calculate the molar concentration of Ba(OH)₂
Molarity is equal to the moles of solute divided by the liters of solution.
[Ba(OH)₂] = 4.65 × 10⁻³ mol/60 × 10⁻³ L = 0.078 M
Step 3: Calculate [OH⁻]
Ba(OH)₂ is a strong base according to the following equation.
Ba(OH)₂ ⇒ Ba²⁺ + 2 OH⁻
The concentration of OH⁻ is 2/1 × 0.078 M = 0.16 M
Step 4: Calculate the pOH
pOH = -log OH⁻ = -log 0.16 = 0.80
Step 5: Calculate the pH
We will use the following expression.
pH + pOH = 14
pH = 14 - 0.80 = 13.20
The question is asking to state the substance that is acting as the Bronsted Lowry base in the forward reaction, base on my research, I would say that the substance acting to said formulas is the NH3. I hope you are satisfied with my answer and feel free to ask for more if you have question and further clarification