1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
anyanavicka [17]
3 years ago
11

An ideal gas in a cylindrical container of radius r and height h is kept at constant pressure p. The bottom of the container is

maintained at temperature T0 while the top at temperature T1. Assuming a linear temperature distribution along the cylinder, calculate the total mass of gas within the container.
Chemistry
1 answer:
Juli2301 [7.4K]3 years ago
8 0

Answer:

m =\frac{p*(pi)*r^{2}*h*mw}{R*\frac{T_{1} + T_{O}}{2}}  

Explanation:

The gas ideal law is  

PV= nRT (equation 1)

Where:

P = pressure  

R = gas constant  

T = temperature  

n= moles of substance  

V = volume  

Working with equation 1 we can get  

n =\frac{PV}{RT}

The number of moles is mass (m) / molecular weight (mw). Replacing this value in the equation we get.

\frac{m}{mw} =\frac{PV}{RT}  or  

m =\frac{P*V*mw}{R*T}   (equation 2)

The cylindrical container has a constant pressure p  

The volume is the volume of a cylinder this is

V =(pi)*r^{2}*h

Where:

r = radius  

h = height  

(pi) = number pi (3.1415)

This cylinder has a radius, r and height, h so the volume is  V =(pi)*r^{2}*h

Since the temperatures has linear distribution, we can say that the temperature in the cylinder is the average between the temperature in the top and in the bottom of the cylinder. This is:  

T =\frac{T_{1} + T_{O}}{2}  

Replacing these values in the equation 2 we get:

m =\frac{P*V*mw}{R*T}   (equation 2)

m =\frac{p*(pi)*r^{2}*h*mw}{R*\frac{T_{1} + T_{O}}{2}}    

You might be interested in
Combustion analysis of 0.300 g of an unknown compound containing carbon, hydrogen, and oxygen produced 0.5213 g of co2 and 0.283
Lyrx [107]
First, we have to get how many grams of C & H & O in the compound:
- the mass of C on CO2 = mass of CO2*molar mass of C /molar mass of CO2
                                        = 0.5213 * 12 / 44 = 0.142 g
- the mass of H atom on H2O = mass of H2O*molar mass of H / molar mass of H2O
                                                 =0.2835 * 2 / 18 = 0.0315 g
- the mass of O = the total mass - the mass of C atom - the mass of H atom
                          =  0.3 - 0.142 - 0.0315 = 0.1265 g
Convert the mass to mole by divided by molar mass
C(0.142/12) H(0.0315/2) O(0.1265/16) 
C(0.0118) H(0.01575) O(0.0079) by dividing by the smallest value 0.0079
C1.504 H3.99 O1 by rounding to the nearst fraction
C3/2 H4/1 )1/1 multiply by 2 
∴ the emprical formula C3H8O2
           



6 0
3 years ago
What is electron shielding
Artist 52 [7]

Shielding electrons are the electrons in the energy levels between the nucleus and the valence electrons. They are called "shielding" electrons because they "shield" the valence electrons from the force of attraction exerted by the positive charge in the nucleus. Hope this helps!!

8 0
3 years ago
Read 2 more answers
Combustion analysis of toluene, a common organic solvent, gives 3.52 mg of co2 and 0.822 mg of h2o. if the compound contains onl
IRISSAK [1]
<span>C7H8 First, lookup the atomic weight of all involved elements Atomic weight of carbon = 12.0107 Atomic weight of hydrogen = 1.00794 Atomic weight of oxygen = 15.999 Then calculate the molar masses of CO2 and H2O Molar mass CO2 = 12.0107 + 2 * 15.999 = 44.0087 g/mol Molar mass H2O = 2 * 1.00794 + 15.999 = 18.01488 g/mol Now calculate the number of moles of each product obtained Note: Not interested in the absolute number of moles, just the relative ratios. So not going to get pedantic about the masses involved being mg and converting them to grams. As long as I'm using the same magnitude units in the same places for the calculations, I'm OK. moles CO2 = 3.52 / 44.0087 = 0.079984 moles H2O = 0.822 / 18.01488 = 0.045629 Since each CO2 molecule has 1 carbon atom, I can use the same number for the relative moles of carbon. However, since each H2O molecule has 2 hydrogen atoms, I need to double that number to get the relative number of moles for hydrogen. moles C = 0.079984 moles H = 0.045629 * 2 = 0.091258 So we have a ratio of 0.079984 : 0.091258 for carbon and hydrogen. We need to convert that to a ratio of small integers. First divide both numbers by 0.079984 (selected since it's the smallest), getting 1: 1.140953 The 1 for carbon looks good. But the 1.140953 for hydrogen isn't close to an integer. So let's multiply the ratio by 1, 2, 3, 4, ..., etc and see what each new ratio looks like (Effectively seeing what 1, 2, 3, 4, etc carbons look like) 1 ( 1 : 1.140953) = 1 : 1.140953 2 ( 1 : 1.140953) = 2 : 2.281906 3 ( 1 : 1.140953) = 3 : 3.422859 4 ( 1 : 1.140953) = 4 : 4.563812 5 ( 1 : 1.140953) = 5 : 5.704765 6 ( 1 : 1.140953) = 6 : 6.845718 7 ( 1 : 1.140953) = 7 : 7.986671 8 ( 1 : 1.140953) = 8 : 9.127624 That 7.986671 in row 7 looks extremely close to 8. I doubt I'd get much closer unless I go to extremely high integers. So it looks like the empirical formula for toluene is C7H8</span>
7 0
3 years ago
I need three examples of objects with high density and three with low density!!
Anuta_ua [19.1K]

Answer:

For example, a suitcase jam-packed with clothes and souvenirs has a high density, while the same suitcase containing two pairs of underwear has low density. Size-wise, both suitcases look the same, but their density depends on the relationship between their mass and volume. Mass is the amount of matter in an object.

5 0
3 years ago
Read 2 more answers
Which spheres are part of the earth system
zubka84 [21]

Answer:

Everything in Earth's system can be placed into one of four major subsystems: land, water, living things, or air. These four subsystems are called "spheres." Specifically, they are the "lithosphere" (land), "hydrosphere" (water), "biosphere" (living things), and "atmosphere" (air).

Explanation:

8 0
3 years ago
Other questions:
  • A heating curve has two flat lines, or plateaus. What does the plateau at the lower temperature represent?
    7·2 answers
  • In a campfire, carbon from wood reacts with oxygen in a combustion reaction. If you’ve ever started a campfire, you know you mus
    10·2 answers
  • Over an interval of 3.00 s the average rate of change of the concentration of C was measured to be 0.0840 M/s. What is the final
    12·1 answer
  • Which properties are characteristic of metalloids?
    8·2 answers
  • How many grams of H2 are needed to react with 47 grams of N2 to produce 200 grams of NH3?
    9·1 answer
  • What is an exoplanet? Explain how scientists decide if an exoplanet might be like Earth Then,
    15·1 answer
  • Write the expected ground electronic configuratio for the noble gas with electron occupying 4f orbitals?
    15·1 answer
  • What is the pH of a solution with a pOH of 13.75?
    10·1 answer
  • At the end we stopped the distillation with some material left in the vial. Why is it considered unsafe to distill until dryness
    8·1 answer
  • Consider two different solutions of the same UV-absorbing compound. Upon UV-analysis, Solution B gave an absorbance of 1.0 and S
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!