I'm not sure what you mean. Besides, I feel like you're talking math.
But anyways, if you have 120 let's say
The scientific notation is 1.20 × 10^2
if you have 125000
the scientific notation is 1.25 × 10^ 5
The number of times you go left the decimal, I guess exponent increases
So yea
They have free electron(s) on their outermost energy levels making them good conductors.
They have metallic bonds in their chemical structure.
They readily lose the electrons on their outermost energy levels, to bond with non-metals in ionic bonds to form chemical compounds called "salts"
Answer:
Reaction of 1-butanol with bromobenzene
Explanation:
The reaction would yield ether as the major product is the reaction of the 1-butanol with bromobenzene. This is because the reaction does not have the large percentage of the undesired side product. In fact, the major product is about 85 % in composition, compared to the 15 % of the minor product. Hence, the reaction is efficient.
A water solution is found to have a molar oh- concentration of 3.2 x 10-5. the solution would be classified as neutral.
The concentration of hydroxide ions (OH-) is measured by pOH. It is a way of expressing how alkaline a solution is. At 25 degrees Celsius, aqueous solutions with pOH values of 7 or less are neutral, whereas those with pOH values of 7 or more are acidic. The hydrogen ion potential is known as pH. The potential of hydroxide ions is known as pOH. 2. It is a scale used to estimate the hydrogen ion (H+) concentration in the solution. The hydroxide ion (OH-) concentration of the solution is measured using this scale.
pH + pOH = 14
pOH = 3.2x 10-5
[OH-] = 10^(-pOH) =10^(- 3.2x 10-5)
= 0.99
The most abundant of all of the isotopes of an element will be the one who's mass the mass of element is closest to. In this case, the mass of atomic carbon is closest to the mass of carbon-12.
Thus, Carbon-12 is the most abundant isotope.