Answer:
B) - 5.0 m
Explanation:
B is located on a positive location, 15m from the starting point A. Hence, since E is located a positive distance 10m from A, the difference becomes 10 - 15 = - 5.0 m
Answer:
The weight of an object is defined as the force of gravity on the object and may be calculated as the mass times the acceleration of gravity, w = mg.
Answer:
1.89mol
Explanation:
The entropy change during free expansion is express as

Where S is the entropy of the system,
n is the amount of mole
R is the gas constant = 8.314 and
V is the volume occupied at the initial and final stage
since the process is n adiabatic free expansion, the entropy of the system is constant. Hence we can re-write the equation as

where the
and 
and
Now if we substitute in values we arrive at

Answer:
a) moves down
b) moves down
c) level remains same
Explanation:
Given that the anchor is initially on the floating boat.
a)
In this condition initially the the volume of water
displaced is to balance its weight.
Now,



We've, the density of steel
and the density of water 

When the anchor is dropped into water:
The volume of water displaced be
which will be equal to the volume of anchor since it is immersed into it.

...................(1)
So the level of water falls when the anchor is dropped into water.
b)
Now, when the anchor is thrown on the ground the water has now less weight to balance so the water level falls down.
c)
When the cork on the from the boat is dropped into the water and it still floats then it must displace same amount of water, hence there should be no change in the water level.
The mass of a neutron is:

Since we know its speed, we can calculate the neutron's momentum:

The problem says the photon has the same momentum of the neutron, p. The photon momentum is given by

where h is the Planck constant, and

is the photon wavelength. If we re-arrange the equation and we use the momentum we found before, we can calculate the photon's wavelength:

And since we know the photon travels at speed of light c, we can now calculate the photon frequency: