<em>The answer you are looking for is: </em>
<em><u>True </u></em>
<em>Hope that helps!! </em>
<em>Have a wonderful day!!</em>
Answer:
The culture of the patient, also known as the consumer of mental health services, influences many aspects of mental health, mental illness, and patterns of health care utilization. One important cautionary note, however, is that general statements about cultural characteristics of a given group may invite stereotyping of individuals based on their appearance or affiliation. Because there is usually more diversity within a population than there is between populations (e.g., in terms of level of acculturation, age, income, health status, and social class), information in the following sections should not be treated as stereotypes to be broadly applied to any individual member of a racial, ethnic, or cultural group.
Explanation:
Explanation:
a)
Sum of moments = 0 (Equilibrium)
T . cos (Q)*L = m*g*L/2



b) If the String is shorter the Q increases; hence, Cos Q decreases which in turn increases Tension in the string due to inverse relationship!
c)

This is a classic example of conservation of energy. Assuming that there are no losses due to friction with air we'll proceed by saying that the total energy mus be conserved.

Now having information on the speed at the lowest point we can say that the energy of the system at this point is purely kinetic:

Where m is the mass of the pendulum. Because of conservation of energy, the total energy at maximum height won't change, but at this point the energy will be purely potential energy instead.

This is the part where we exploit the Energy's conservation, I'm really insisting on this fact right here but it's very very important, The totam energy Em was

It hasn't changed! So inserting this into the equation relating the total energy at the highest point we'll have:

Solving for h gives us:

It doesn't depend on mass!
Answer:
amount of energy = 4730.4 kWh/yr
amount of money = 520.34 per year
payback period = 0.188 year
Explanation:
given data
light fixtures = 6
lamp = 4
power = 60 W
average use = 3 h a day
price of electricity = $0.11/kWh
to find out
the amount of energy and money that will be saved and simple payback period if the purchase price of the sensor is $32 and it takes 1 h to install it at a cost of $66
solution
we find energy saving by difference in time the light were
ΔE = no of fixture × number of lamp × power of each lamp × Δt
ΔE is amount of energy save and Δt is time difference
so
ΔE = 6 × 4 × 365 ( 12 - 9 )
ΔE = 4730.4 kWh/yr
and
money saving find out by energy saving and unit cost that i s
ΔM = ΔE × Munit
ΔM = 4730.4 × 0.11
ΔM = 520.34 per year
and
payback period is calculate as
payback period = 
payback period = 
payback period = 0.188 year