Answer:
- Option <u><em>C) The rates of the forward and reverse reactions are equal.</em></u>
Explanation:
NO₂ and N₂O₄ undergo the following <em>equilibrium</em> reaction:
That is a reversible reaction, i.e. there are two simultaneous reactions: the direct or forward reaction and the reverse reaction:
- Direct reaction: 2NO₂(g) → N₂O₄(g)
- Reverse reaction: 2NO₂(g) ← N₂O₄(g)
At the beginning, only NO₂(g) is in the sealed container. The NO₂ concentration is maximum, and the rate of the forward reaction is maximum.
As the reaction progresses, the concentration of NO₂ diminishes, and, consequently, the rate of the forward reaction decreases.
As soon as the N₂O₄ appears, the reverse reaction starts. At the beginning the rate is low, but as the N₂O₄ concentration increases the rate of the reverse reaction increases.
When both forward and reverse rates become equal the equilibrium has been reached. This is what is called a dynamical equilibrium.
Then, as per the choices, you have that, at equilibrium:
<u>A) No N₂O₄ is present</u>:
- False: as explained above, at equilibrium both NO₂ and N₂O₄ are present.
<u>B) No chemical reactions are occurring</u>.
- False: as explained above, at equilibrium both forward and reverse reaction are occurring at the same rate.
<u>C) The rates of the forward and reverse reactions are equal</u>.
- True: as explained, this is the meaning of dynamic equilibrium.
<u>D) The maximum number of molecules has been reached</u>.
- False: the number of molecules of each compound at equilibrium will be given by the constant of equiibrium, Keq = [N₂O₄] / [NO₂]², and this value varies with the temperature.