The Law of Conservation of Mass dates from Antoine Lavoisier's 1789 discovery that mass is neither created nor destroyed in chemical reactions. ... If we account for all reactants and products in a chemical reaction, the total mass will be the same at any point in time in any closed system.
Answer:
You may be referring to the gas that makes up 21% of the earth's atmosphere, which is oxygen.
Explanation:
According to NASA, the gases in Earth's atmosphere include:
Nitrogen — 78 percent
Oxygen — 21 percent
Argon — 0.93 percent
Carbon dioxide — 0.04 percent
(Trace amounts of neon, helium, methane, krypton and hydrogen, as well as water vapor)
I would think it is a heterogeneous mixture since it can't be an element since there are more than one type of atom, it can't be a compound since the leaves are not bonded together, and it can not be a homogeneous mixture since the leaves don't all blended together (the pile is not uniform) and you can distinguish all the different parts of the mixture. It can be considered a heterogeneous mixture since the leaves are mixed together (along with other things like dirt) in a non-uniform way so that you can point out the parts of the mixture and it does not look like one thing.
I hope this helps. Let me know in the comments if anything is unclear.
It would be solid because you said it dissolves...Hope this helped :)
The volume of H₂ : = 15.2208 L
<h3>Further explanation</h3>
Given
Reaction
2 As (s) + 6 NaOH (aq) → 2 Na₃AsO₃ (s) + 3 H₂ (g)
34.0g of As
Required
The volume of H₂ at STP
Solution
mol As (Ar = 75 g/mol) :
= mass : Ar
= 34 g : 75 g/mol
= 0.453 mol
From the equation, mol ratio As : H₂ = 2 : 3, so mol H₂ :
=3/2 x mol As
=3/2 x 0.453
= 0.6795
At STP, 1 mol = 22.4 L, so :
= 0.6795 x 22.4 L
= 15.2208 L