Answer:
1.05 J.
Explanation:
Kinetic Energy: This is the energy possessed by a body due to its motion. The S.I unit of kinetic energy is Joules (J). The formula of kinetic energy is given as
Ek = 1/2mv²................. Equation 1
Where Ek = kinetic energy, m = mass of the uniform rod, v = liner velocity of the rod.
But,
v = αr .......................... Equation 2
Where α = angular velocity of the rod, r = radius of the circle.
Given: α = 3.6 red/s, r = 120/2 = 60 cm = 0.6 m.
Substitute into equation 2
v = 3.6(0.6)
v = 2.16 m/s.
Also given: m = 450 g = 0.45 kg.
Substitute into equation 1
Ek = 1/2(0.45)(2.16²)
Ek = 1.05 J.
Answer:
A. polymerization
Explanation:
Synthetic plastics are made by linking many simple carbon molecules together to form much larger molecules. This process is called polymerization.
Synthetic or artifical giant molecules consists of synthetic polymers such as plastics, elastomers etc. They are made up of simple monomers which links to form the complex and giant structure.
Monomers are the simplest unit of polymers. Polymers have very great sizes. The size mkaes their structure quite complex. This makes the molecules more disposed in a regular pattern with respect to one another.
The complexity of structure and the attendant effects accounts for the properties and uses that makes synthetic molecules very unique. For example, plastics can be extruded as sheets, pipes and or moulded into other objects.
The difference between the two is, well for one
Spectrum: The entire range that the "<em>waves" </em>could be such, as visible light, x-ray's and so on.
Waves: These are different because they aren't telling you or showing the entire spectrum just which they length that they are.
<em>It may confuse you but it makes sense to me (Sorry)</em>
It’s mass is 100 kg, because if you divide both numbers, you get 100
<span>The shortening velocity refers to the speed of the contraction from the muscle shortening while lifting a load. Maximal shortening velocity is only attained with a minimal load. With a light load, the shortening velocity is at its Maximal shortening velocity. When the weight is heavy, the speed in which the muscle lifts the weight decreases in speed at a slower velocity.</span>