Answer:
2700
Explanation:
because calculate the minute1=60×45=2700
Answer: W = 294 J
Explanation: Solution:
Work is expressed as the product of force and the distance of the object.
W = Fd where F = mg
W= Fd
= mg d
= 15 kg ( 9.8 m/s²) ( 2m )
= 294 J
Answer:
a) 1.20227 seconds
b) 0.98674 m
c) 7.3942875 m/s
Explanation:
t = Time taken
u = Initial velocity = 4.4 m/s
v = Final velocity
s = Displacement
a = Acceleration due to gravity = 9.81 m/s²


b) Her highest height above the board is 0.98674 m
Total height she would fall is 0.98674+1.8 = 2.78674 m

a) Her feet are in the air for 0.75375+0.44852 = 1.20227 seconds

c) Her velocity when her feet hit the water is 7.3942875 m/s
Complete question is:
A 1200 kg car reaches the top of a 100 m high hill at A with a speed vA. What is the value of vA that will allow the car to coast in neutral so as to just reach the top of the 150 m high hill at B with vB = 0 m/s. Neglect friction.
Answer:
(V_A) = 31.32 m/s
Explanation:
We are given;
car's mass, m = 1200 kg
h_A = 100 m
h_B = 150 m
v_B = 0 m/s
From law of conservation of energy,
the distance from point A to B is;
h = 150m - 100 m = 50 m
From Newton's equations of motion;
v² = u² + 2gh
Thus;
(V_B)² = (V_A)² + (-2gh)
(negative next to g because it's going against gravity)
Thus;
(V_B)² = (V_A)² - (2gh)
Plugging in the relevant values;
0² = (V_A)² - 2(9.81 × 50)
(V_A) = √981
(V_A) = 31.32 m/s