The speed of the brick dropped by the builder as it hits the ground is 17.32m/s.
Given the data in the question;
Since the brick was initially at rest before it was dropped,
- Initial Velocity;

- Height from which it has dropped;

- Gravitational field strength;

Final speed of brick as it hits the ground; 
<h3>Velocity</h3>
velocity is simply the same as the speed at which a particle or object moves. It is the rate of change of position of an object or particle with respect to time. As expressed in the Third Equation of Motion:

Where v is final velocity, u is initial velocity, h is its height or distance from ground and g is gravitational field strength.
To determine the speed of the brick as it hits the ground, we substitute our giving values into the expression above.

Therefore, the speed of the brick dropped by the builder as it hits the ground is 17.32m/s.
Learn more about equations of motion: brainly.com/question/18486505
The condition of earths atmosphere at a given time and place is the weather.
Right. You are true. The direction of the electric field is defined to be
the direction of the force on a small positive charge placed in the field.
Answer:
21.21 m/s
Explanation:
Let KE₁ represent the initial kinetic energy.
Let v₁ represent the initial velocity.
Let KE₂ represent the final kinetic energy.
Let v₂ represent the final velocity.
Next, the data obtained from the question:
Initial velocity (v₁) = 15 m/s
Initial kinetic Energy (KE₁) = E
Final final energy (KE₂) = double the initial kinetic energy = 2E
Final velocity (v₂) =?
Thus, the velocity (v₂) with which the car we travel in order to double it's kinetic energy can be obtained as follow:
KE = ½mv²
NOTE: Mass (m) = constant (since we are considering the same car)
KE₁/v₁² = KE₂/v₂²
E /15² = 2E/v₂²
E/225 = 2E/v₂²
Cross multiply
E × v₂² = 225 × 2E
E × v₂² = 450E
Divide both side by E
v₂² = 450E /E
v₂² = 450
Take the square root of both side.
v₂ = √450
v₂ = 21.21 m/s
Therefore, the car will travel at 21.21 m/s in order to double it's kinetic energy.
It would tack about 3.2 h