Answer:
Flux is 21 Nm^2/C.
Explanation:
Electric field, E = 6 N/C along X axis
Electric filed vector, E = 6 i N/C
Area, A = 4 square meter
Area vector

The flux is given by

Answer: I do
Explanation:
Resistance opposes current thereby reducing the amount of current that flows through a circuit. In other words, it leads to a loss of electrical energy.
Ideally speaking, a good circuit should have no internal resistance as this would lead to more energy having to be supplied to overcome that resistance. External resistance however, is not a bad thing. For instance, oxygen being removed from lightbulbs.
Answer:
Capacitive Reactance is 4 times of resistance
Solution:
As per the question:
R = 
where
R = resistance

f = fixed frequency
Now,
For a parallel plate capacitor, capacitance, C:

where
x = separation between the parallel plates
Thus
C ∝ 
Now, if the distance reduces to one-third:
Capacitance becomes 3 times of the initial capacitace, i.e., x' = 3x, then C' = 3C and hence Current, I becomes 3I.
Also,

Also,
Z ∝ I
Therefore,




Solving the above eqn:

We learned that We are in the disk of the Galaxy, about 5/8 of the way from the center.
<h3>What is the work of Harlow Shapley?</h3>
Shapley, who was headquartered in Boulder, Colorado, used Cepheid variable stars to estimate the size of the Milky Way Galaxy and its position relative to the Sun. In 1953, he published his "liquid water belt" theory, today known as the concept of a livable zone.
There are many stars, grains of dust, and gas in the Milky Way. It is known as a spiral galaxy because, from the top or bottom, it would appear to be whirling like a pinwheel. About 25,000 light-years from the galaxy's nucleus, the Sun is situated on one of the spiral arms.
Approximately 5/8 of the way from the galaxy's nucleus, we are in the disc. William Herschel believed that the Sun and Earth were about in the middle of the vast cluster of stars known as the Milky Way.
To learn more about Harlow Shapley's original estimate go to - brainly.com/question/28145909
#SPJ4
Answer:
When like charges come together, they repel each other. For instance, when the north and south poles of a magnet come together, they push each other apart. The like poles in the magnet repel each other and unlike poles attract each other much. The same reaction occurs in like and unlike charges. Also, the repulsion acts along the line between the two charges.