1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elden [556K]
3 years ago
7

Explain the importance of measurementPhysics.​

Physics
1 answer:
KiRa [710]3 years ago
7 0

Answer:

Measurements are an important part of comparing things, as they provide the basis on comparing objects to other objects. Measurements allow us to recognize three hours and see how it's shorter than five hours, without having to observe the hours passing by themselves.

You might be interested in
If a ball is 10m high with what velocity will it fall?
Semmy [17]

14m/s

Explanation:

Given parameters:

Height of the ball = 10m

Unknown:

Velocity of fall or final velocity = ?

Solution:

We are going to use the appropriate equation of motion to solve this problem.

The object is falling with respect to gravity.

  V² = U² + 2gH

where V is the final velocity

            U is the initial velocity

             g is the acceleration due to gravity 9.8m/s²

             H is the height of fall

The initial velocity here is zero and

      V² = 2 x 9.8 x 10 = 196

       V = 14m/s

learn more:

Motion problems brainly.com/question/5248528

#learnwithBrainly

6 0
3 years ago
A yoyo with a mass of m = 150 g is released from rest as shown in the figure.
avanturin [10]

(1) The linear acceleration of the yoyo is 3.21 m/s².

(2) The angular acceleration of the yoyo is 80.25 rad/s²

(3) The  weight of the yoyo is 1.47 N

(4) The tension in the rope is 1.47 N.

(5) The angular speed of the yoyo is 71.385 rad/s.

<h3> Linear acceleration of the yoyo</h3>

The linear acceleration of the yoyo is calculated by applying the principle of conservation of angular momentum.

∑τ = Iα

rT - Rf = Iα

where;

  • I is moment of inertia
  • α is angular acceleration
  • T is tension in the rope
  • r is inner radius
  • R is outer radius
  • f is frictional force

rT - Rf = Iα  ----- (1)

T - f = Ma  -------- (2)

a = Rα

where;

  • a is the linear acceleration of the yoyo

Torque equation for frictional force;

f = (\frac{r}{R} T) - (\frac{I}{R^2} )a

solve (1) and (2)

a = \frac{TR(R - r)}{I + MR^2}

since the yoyo is pulled in vertical direction, T = mg a = \frac{mgR(R - r)}{I + MR^2} \\\\a = \frac{(0.15\times 9.8 \times 0.04)(0.04 - 0.0214)}{1.01 \times 10^{-4} \ + \ (0.15 \times 0.04^2)} \\\\a = 3.21 \ m/s^2

<h3>Angular acceleration of the yoyo</h3>

α = a/R

α = 3.21/0.04

α = 80.25 rad/s²

<h3>Weight of the yoyo</h3>

W = mg

W = 0.15 x 9.8 = 1.47 N

<h3>Tension in the rope </h3>

T = mg = 1.47 N

<h3>Angular speed of the yoyo </h3>

v² = u² + 2as

v² = 0 + 2(3.21)(1.27)

v² = 8.1534

v = √8.1534

v = 2.855 m/s

ω = v/R

ω = 2.855/0.04

ω = 71.385 rad/s

Learn more about angular speed here: brainly.com/question/6860269

#SPJ1

3 0
1 year ago
A light wave travels through air in equals 1.00 at an angle of 35 degrees what angle does it have when it passes from the air in
lyudmila [28]

Answer: Angle 59 degree

Explanation: Given that the

n1 = 1.0

n2 = 1.5

Øi = 35 degree

From Snell law, which says that

n1/n2 = sinØ1/ sinØ2

Substitute all the parameters into the formula

1/1.5 = sin 35/sinØ2

Cross multiply

Sin Ø2 = 1.5 sin35

SinØ2 = 1.5 × 0.573 = 0.860

Ø2 = sin^-1(0.860)

Ø2 = 59.36 degree

Ø2 = 59 degree ( approximately)

It has angle 59 degree when passing from air to glass

5 0
2 years ago
You drop a 0.375 kg ball from a height of 1.37 m. It hits the ground and bounces up again to a height of 0.67 m. How much energy
Radda [10]

2.57 joule energy lose in the bounce .

<u>Explanation</u>:

when ball is the height of 1.37 m from the ground  it has some gravitational potential energy with respect to hits the ground  

Formula for gravitational potential energy given by  

Potential Energy = mgh

Where ,

m = mass  

g = acceleration due to gravity  

h = height

Potential energy when ball hits the ground

m= 0.375 kg

h = 1.37 m

g = 9.8 m/s²

Potential Energy = 0.375\times9.8\times1.37

Potential Energy = 5.03 joule

Potential energy when ball bounces up again

h= 0.67 m

Potential Energy = 0.375\times0.67\times9.8

Potential Energy = 2.46 joule

Energy loss = 5.03 - 2.46 = 2.57 joule

2.57 joule energy lose in the bounce

6 0
3 years ago
What is the difference between a neap and a spring tide in terms of size?
Mamont248 [21]
Spring tides occur when the moon is either new or full, and the sun, the moon, and the Earth are aligned. ... neap tide- A tide in which the difference between high and low tide is the least. Neap tides occur twice a month when the sun and moon are at right angles to the Earth.
7 0
3 years ago
Other questions:
  • Check
    13·2 answers
  • When a car's velocity is positive and its acceleration is negative, what is happening to the car's motion?
    9·1 answer
  • Sort the characteristics of solids liquids and gases into the correct colums
    10·1 answer
  • Which pairs of angles in the figure below are verticals angles ? check all that apply.
    14·1 answer
  • What is the force needed to throw a ball 7 meters when 1778 J of work is done?
    6·1 answer
  • Give an example of each element,compound, and mixture
    7·2 answers
  • A converging meniscus lens has an index of refraction of 1.55 and radii of curvature for its surfaces of 4.60 cm and 9.20 cm. Th
    13·1 answer
  • With what force will a car hit a tree if the car has a mass of 3,550 kg and it is accelerating at a rate of 2.5 m/s2 on a snowy
    6·1 answer
  • Which is the best explanation for his results?
    5·2 answers
  • If the Earth’s mass decreased, how would the gravity between the Sun and Earth change?
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!