<span>K.E = 0.5 * m * v^2 ( m = mass(Kg), V = Velocity(m/s)
= 0.5 * 8 * 5^2
= 4 * 25
= 100 J </span>
The height of the tennis ball,relative to the ground is H=h max+h-->h max-the maximum height that the tennis ball reaches relative to the roof of the building; h-the height of the building;h max =v0^2/2g=24,2m(g=10m/s^2).H=gt^2/2=>24,2+h=gt^2/2=>h=gt^2/2-24,2=180,6m
Theories are usually backed up with a lot of evidence. If the evidence is well studied then it is useful information.
Answer:
Resistance in the flash tube, 
Explanation:
It is given that,
Speed of the bullet, v = 500 m/s
Distance between one RC constant, d = 1 mm = 0.001 m
Capacitance, 
The time constant of RC circuit is given by :

R is the resistance in the flash tube
..........(1)
Speed of the bullet is given by total distance divided by total time taken as :




Equation (1) becomes :


So, the resistance in the flash tube is
. Hence, this is the required solution.
The image distance can be determined using the mirror equation: 1/f = 1/d_o + 1/d_i, where, f is the focal length, d_o is the object distance, and d_i is the image distance. Given that f = 28.2 and d_o = 33.2 cm, the value of d_i is calculated to be 187.248 cm. On the other hand, the image height is obtained using the magnification equation wherein, h_i/h_o = -d_i/d_o, where h_i is the image height and h_o is the object height. Using the given values, h_i is equal to -26.79 cm. Note that the negative sign indicates that the image is inverted.