No, not exactly. They jiggle and tremble and vibrate a lot, but
they always basically stay in very nearly the same place.
It's like if you're allowed to go anywhere you want in your jail cell,
you wouldn't exactly call that "moving about freely".
Answer:
In physics, the kinetic energy (KE) of an object is the energy that it possesses due to its motion
In classical mechanics, the gravitational potential at a location is equal to the work (energy transferred) per unit mass that would be needed to move an object to that location from a fixed reference location. It is analogous to the electric potential with mass playing the role of charge. The reference location, where the potential is zero, is by convention infinitely far away from any mass, resulting in a negative potential at any finite distance.
In mathematics, the gravitational potential is also known as the Newtonian potential and is fundamental in the study of potential theory. It may also be used for solving the electrostatic and magnetostatic fields generated by uniformly charged or polarized ellipsoidal bodies
Answer:1200
Explanation:
Given data
Upper Temprature
Lower Temprature 
Engine power ouput
Efficiency of carnot cycle is given by





rounding off to two significant figures

Well momentum is = to Mass*Velocity so let's use an example to figure this out
If I weighed 50kg and I was jogging at 3m/s then I broke into a run at 6m/s how will me momentum be affected?
3m/s*50kg=150
6m/s*50kg=300
So as you can see by doubling the velocity you also double the momentum
Answer:
The component form will be;
In the x-axis = 121.73 due west
In the y-axis = 690.35 due south
Explanation:
An image of the calculation has been attached