Explanation:
Load (l) = 680N
Effort (E) = 500N
Length slope (l) = 12m
Height slope (h) = 8 m
Output = load * height
680 *8 = 5.44 *103 J
The Input = effort * length = 500 *12 = 6000J
the Mechanical advantage (M.A) = load effort= 600500=1.36
the Velocity ratio (V.R) =lh=128 = 1.5
the Efficiency =M.A100%V.R= 90.6%
Yes , increased tension suggests increased molecular attraction between the molecules of the ropes which affect the increase in the speed of wave.
Explanation:
Below is an attachment containing the solution
Answer:
n=2.053
Explanation:
We will use Snell's Law defined as:

Where n values are indexes of refraction and
values are the angles in each medium. For vacuum, the index of refraction in n=1. With this we have enough information to state:

Solving for
yields:

Remember to use degrees for trigonometric functions instead of radians!