This is a 30-60-90 triangle and we can apply rules to easily identify the hypotenuse of this triangle, which is denoted by <em>x</em>.
The length of the longer side of the triangle is given in the problem. To solve the hypotenuse of this triangle, let's solve first for the length of the shorter side of the triangle.
The shorter side can be solved by just dividing the length of the longer side by the square root of 3. Hence, we have
![short=\frac{4}{\sqrt[]{3}}](https://tex.z-dn.net/?f=short%3D%5Cfrac%7B4%7D%7B%5Csqrt%5B%5D%7B3%7D%7D)
Since we already have the values for the length of the shorter side and longer side, we can solve for the hypotenuse using the Pythagorean theorem.
![\begin{gathered} c=\sqrt[]{a^2+b^2} \\ c=\sqrt[]{4^2+(\frac{4}{\sqrt[]{3}})^2} \\ c=\sqrt[]{16+\frac{16}{3}} \\ c=\sqrt[]{\frac{64}{3}} \\ c=\frac{8}{\sqrt[]{3}}\cdot\frac{\sqrt[]{3}}{\sqrt[]{3}} \\ c=\frac{8\sqrt[]{3}}{3} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20c%3D%5Csqrt%5B%5D%7Ba%5E2%2Bb%5E2%7D%20%5C%5C%20c%3D%5Csqrt%5B%5D%7B4%5E2%2B%28%5Cfrac%7B4%7D%7B%5Csqrt%5B%5D%7B3%7D%7D%29%5E2%7D%20%5C%5C%20c%3D%5Csqrt%5B%5D%7B16%2B%5Cfrac%7B16%7D%7B3%7D%7D%20%5C%5C%20c%3D%5Csqrt%5B%5D%7B%5Cfrac%7B64%7D%7B3%7D%7D%20%5C%5C%20c%3D%5Cfrac%7B8%7D%7B%5Csqrt%5B%5D%7B3%7D%7D%5Ccdot%5Cfrac%7B%5Csqrt%5B%5D%7B3%7D%7D%7B%5Csqrt%5B%5D%7B3%7D%7D%20%5C%5C%20c%3D%5Cfrac%7B8%5Csqrt%5B%5D%7B3%7D%7D%7B3%7D%20%5Cend%7Bgathered%7D)
Hence, the value of hypotenuse for this right triangle is
Answer:
Option 4: 0.554
Step-by-step explanation:
As we can see that the intervals and their frequencies are given.
We have to calculate the probability of students' score falling between 70 and 89. It will use the frequency of both intervals 70-79 and 80-89.
So, combined scores of both intervals are:
172+105 = 277
Now to find the probability
= 277/500
=0.554
So option no 4 is the correct answer ..
Round down to 10. 13 goes to 10.