1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
m_a_m_a [10]
3 years ago
15

In Young's experiment a mixture of orange light (611 nm) and blue light (471 nm) shines on the double slit. The centers of the f

irst-order bright blue fringes lie at the outer edges of a screen that is located 0.497 m away from the slits. However, the first-order bright orange fringes fall off the screen. By how much and in what direction (toward or away from the slits) should the screen be moved, so that the centers of the first-order bright orange fringes just appear on the screen
Physics
1 answer:
zhannawk [14.2K]3 years ago
8 0

Answer:

0.5639m

Explanation:

For a young double slit experiment the expression below gives the angular separation for m dark fringe having slit width d and wavelength λ

=sin⁻¹(mλ/d)

mλ /d =y/L

for the first order,

y= mλL/d

For ratio separation y₀/yD=1 and d= 1

y₀/yD= [mλ ₀L₀/d]/[mλD.LD./d]

1=λ ₀L₀/λD.LD.

λD.LD= λ ₀L₀

L₀= λD.LD/ λ ₀..............(1)

Then substitute the given values into (1) we have

L₀=471 *0.497/611

= 0.3831m

Distance by which the screen has to be moved towards the slit is

LD- Lo

0.947-0.3831= 0.5639m

You might be interested in
What do you think we call this graphical representation based on your prior experience with electric fields and electric field l
slavikrds [6]

Answer:

Explanation:

The strengthcompassion field is proportional to the closeness of the field lines—more precisely, it is proportional to the number of lines per unit area perpendicular to the lines. The direction of the electric field is tangent to the field line at any point in space. Field lines can never cross. These pattern of lines, sometimes referred to as electric field lines, point in the direction that a positive test charge would accelerate if placed upon the line. As such, the lines are directed away from positively charged source charges and toward negatively charged source charges.

Rules for drawing electric field lines

1. Electric field lines are always drawn from High potential to

low potential.

2. Two electric field lines can never intersect each other.

3. The net electric field inside a Conductor is Zero.

4. Electric field line from a positive charge is drawn radially outwards and from a negative charge radially inwards.

5. The density of electric field lines tells the strength of the electric field at that region.

6. Electric field lines terminate Perpendicularly to the surface of a conductor.

A vector quantity has a direction and a magnitude, while a scalar has only a magnitude. You can tell if a quantity is a vector by whether or not it has a direction associated with it.

So, electric fields are vector quantity due to the fact any student can tell you that a compass is used to determine which direction is north.

Since the compass always point northward, then it has a direction and magnitude and so it is a vector quantity

6 0
3 years ago
block of mass 0.5kg on a horizontal surface is attached to a horizontal spring of negligible mass and spring constant 50N/m . Th
Alisiya [41]

Answer:

Explanation:

The mass of the block is 0.5kg

m = 0.5kg.

The spring constant is 50N/m

k =50N/m.

When the spring is stretch to 0.3m

e=0.3m

The spring oscillates from -0.3 to 0.3m

Therefore, amplitude is A=0.3m

Magnitude of acceleration and the direction of the force

The angular frequency (ω) is given as

ω = √(k/m)

ω = √(50/0.5)

ω = √100

ω = 10rad/s

The acceleration of a SHM is given as

a = -ω²A

a = -10²×0.3

a = -30m/s²

Since we need the magnitude of the acceleration,

Then, a = 30m/s²

To know the direction of net force let apply newtons second law

ΣFnet = ma

Fnet = 0.5 × -30

Fnet = -15N

Fnet = -15•i N

The net force is directed to the negative direction of the x -axis

8 0
3 years ago
A girl kicks a blue ball with a velocity of 20.0 m/s at 65.0o. How long is it in the air?
34kurt

Explanation:

t = usin©/g

Where t is the time to reach the maximum height

Time spent in air is T = 2t

Hence, T = 2usin©/g

T = 2 x 20 x sin 65°/ 9.8

T = 3.69s

8 0
3 years ago
Explain how the situation shown above would be different if the skier experiences friction while traveling downhill. Include the
aleksandrvk [35]

Answer:

The force of friction acts in the direction opposite to the direction of motion. If friction would have been applied to the skier it would have resulted in a lower velocity and less kinetic energy.

Explanation:

5 0
3 years ago
A thin spherical shell with radius R1 = 2.00 cm is concentric with a larger thin spherical shell with radius R2 = 6.00 cm. Both
Dafna11 [192]

Answer:

a. i. 1350 V ii 0 V iii -450 V b. 6.75 kV. The inner shell is at a higher potential.

Explanation:

The formula for electric potential is given by V = Σkq/r, where k = 9 × 10⁹ Nm²/C², q = charge and r = distance.

q₁ = charge on smaller shell = +6.00 nC = +6.00 × 10⁻⁹ C, r₁ = radius of smaller shell = 2.00 cm = 2.00 × 10⁻² m.

q₂ = charge on larger shell = -9.00 nC = -9.00 × 10⁻⁹ C, r₂ = radius of larger shell = 6.00 cm = 6.00 × 10⁻² m.

a. At r = 0, inside both spheres V = kq₁/r₁ + kq₂/r₂. = k(q₁/r₁ + q₂/r₂) = 9 × 10⁹ [+6.00 × 10⁻⁹/2.00 × 10⁻² + (-9.00 × 10⁻⁹/6.00 × 10⁻²)] = 1350 V

ii. At r = 4.00 cm, the point outside of smaller shell but inside larger shell. r₁ = 4.00 cm = 4.00 × 10⁻² m and r₂ = 6.00 cm = 6.00 × 10⁻². So, V = kq₁/r₁ + kq₂/r₂. = k(q₁/r₁ + q₂/r₂) = 9 × 10⁹ [+6.00 × 10⁻⁹/4.00 × 10⁻² + (-9.00 × 10⁻⁹/6.00 × 10⁻²)] = 0 V.

iii. At r = 6.00 cm, the point outside both shells. r₁ = r₂ = r = 6.00 cm = 6.00 × 10⁻². So, V = kq₁/r₁ + kq₂/r₂. = k(q₁ + q₂)/r = 9 × 10⁹ [+6.00 × 10⁻⁹+ (-9.00 × 10⁻⁹)]/6.00 × 10⁻² = -450 V.

b. The potential of the surface of the smaller shell is V₁ = 9 × 10⁹ [+6.00 × 10⁻⁹/2.00 × 10⁻²] = 2700 V = 2.7 kV.

The potential of the surface of the larger shell is V₂ = 9 × 10⁹ [-9.00 × 10⁻⁹/2.00 × 10⁻²] = -4050 V = -4.050 kV. The potential difference V₁ - V₂ = 2700 - (-4050) V = 6750 V = 6.75 kV. Since the potential difference is positive, V₁ is higher. So, the inner shell is at a higher potential.

8 0
3 years ago
Other questions:
  • The frequency of a microwave is 1.2 x 10^9 hertz. what is the wavelength of the given problem.
    7·1 answer
  • Which of the following properties of water help to explain why icebergs float in the ocean?
    14·1 answer
  • Based on the law of conservation of energy, how can we reasonably improve a machine’s ability to do work?
    9·2 answers
  • P6: An object of mass m sits on a spring of constant k in an elevator that is accelerating upwards with acceleration a. a) In te
    14·1 answer
  • Help me please, i need it fast
    6·1 answer
  • When the volcano Krakatoa erupted in 1883, it was heard 5000 km away. Which statement about the sound from the volcano is not co
    10·1 answer
  • Suppose that Paul D. Trigger fires a bullet from a gun. Will the speed of the bullet leaving the muzzle will be the same as the
    12·1 answer
  • Im Stuck In This Thing Called ''Life" Can You Help Me.
    12·2 answers
  • Suppose the coefficient of static friction between a quarter and the back wall of a rocket car is 0.383. At what minimum rate wo
    11·1 answer
  • A 2.00 kg block on a horizontal floor is attached to a horizontal spring that is initially compressed 0.0300 m . The spring has
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!