Answer:
The image distance is 30 cm
image height = - 5 cm
Explanation:
The formula for calculating the image distance is expressed as
1/f = 1/u + 1/v
where
f is the focal length
u is the object distance
v is the image distance
From the information given,
u = 30
f = 15
By substituting these values into the formula,
1/15 = 1/30 + 1/v
1/v = 1/15 - 1/30 = (2 - 1)/30 = 1/30
Taking the reciprocal of both sides,
v = 30
The image distance is 30 cm
magnification = image height/object height = - v/u
Given that object height = 5 cm, then
image height/5 = - 30/30 = - 1
image height = - 5 * 1
image height = - 5 cm
Answer:
it would have potential energy
You can tell a lot about an object that's not moving,
and also a lot about the forces acting on it:
==> If the box is at rest on the table, then it is not accelerating.
==> Since it is not accelerating, I can say that the forces on it are balanced.
==> That means that the sum of all forces acting on the box is zero,
and the effect of all the forces acting on it is the same as if there were
no forces acting on it at all.
==> This in turn means that all of the horizontal forces are balanced,
AND all of the vertical forces are balanced.
Horizontal forces:
sliding friction, somebody pushing the box
All of the forces on this list must add up to zero. So ...
(sliding friction force) = (pushing force), in the opposite direction.
If nobody pushing the box, then sliding friction force = zero.
Vertical forces:
gravitational force (weight of the box, pulling it down)
normal force (table pushing the box up)
All of the forces on this list must add up to zero, so ...
(Gravitational force down) + (normal force up) = zero
(Gravitational force down) = -(normal force up) .
Answer:
The Ionospheric Effect
Explanation:
One of the largest errors in GPS positioning is attributable to the atmosphere. The long, relatively unhindered travel of the GPS signal through the virtual vacuum of space changes as it passes through the earth’s atmosphere. Through both refraction and diffraction, the atmosphere alters the apparent speed and, to a lesser extent, the direction of the signal. This causes an apparent delay in the signal's transit from the satellite to the receiver.
The magnetic force exerted by a field E to a charge q is given by F=Eq. In this case, F=4.30*10^4*(6.80mu C). 1mu C=10^-6C, so F=4.30*6.80=10^-2=0.29N. The direction is in the x direction, the direction that the field is applied because the charge is positive.