Answer:
Angular frequency will increase
No change in the amplitude
Explanation:
At extreme end of the SHM the energy of the SHM is given by

here we know that

now at the extreme end when one of the mass is removed from it
then in that case the angular frequency will change

So angular frequency will increase
but the position of extreme end will not change as it is given here that the top block is removed without disturbing the lower block
so here no change in the amplitude
Answer:
The astronaut's mass is 16 kg.
Explanation:
Mass can be defined as a measure of the amount of matter an object or a body comprises of. The standard unit of measurement of the mass of an object or a body is kilograms.
Irrespective of the location of an object or a body at a given moment in time, the mass (amount of matter that they're made up of) is constant. This ultimately implies that, whether you're in the moon, space, earth or any other place, your mass remains the same (constant).
Therefore, if an astronaut has a mass of 16 Kg on Earth, his mass on the moon and on the space station would remain the same, as his original mass of 16 Kg because mass is indestructible.
If an asteroid were to strike land or a shallow body of water, it would eject an enormous amount of dust, ash, and other material into the atmosphere, blocking the radiation from the Sun. This would cause the global temperature to decrease drastically..
Answer:
Mohammed has less kinetic energy than Autumn
Explanation:
The kinetic energy of each student is given by:

where
m is the mass of the student
v is the speed of the student
Let's use the formula above to calculate the kinetic energy of each student:
- Autumn: 
- Mohammed: 
- Lexy: 
- Chiang: 
Therefore, by looking at the numbers, we see that the correct answer is
Mohammed has less kinetic energy than Autumn
I calculated on a sheet and used differentiation to solve the problems.