True
Carbon monoxide is a primary pollutant which no odor results from incomplete combustion of fuel. The man sources are gasoline and burning of biomass.
Depending on the source of emission, pollutants can be classified into two groups that is primary and secondary pollutants.
A primary pollutant is emitted in the atmosphere directly from a source. It can be either natural sch as volcanic eruptions, sandstorms or man-made that is due to industrial and vehicle emissions. Examples of primary pollutants are nitrogen oxides, carbon monoxide and particulate matter.
Secondary pollutant is due to interactions between primary and secondary pollutants. These can be chemical or physical interactions. Examples are photo-chemical oxidants and secondary particulate matter.
Therefore, carbon monoxide CO is a primary pollutant.
Answer:
- <u><em>Ratio of the mass carbon that combines with 1.00 g of oxygen in compound 2 to the mass of carbon that combines with 1.00 g of oxygen in compound 1 = 2</em></u>
Explanation:
First, detemine the mass of oxygen in the two samples by difference:
- mass of oxygen = mass of sample - mass of carbon
Item Compound 1 Compound 2
Sample 80.0 g 80.0 g
Carbon 21.8 g 34.3 g
Oxygen: 80.0 g - 21.8g = 58.2 g 80.0 g - 34.3 g = 45.7 g
Second, determine the ratios of the masses of carbon that combine with 1.00 g of oxygen:
- For each sample, divide the mass of carbon by the mass of oxygen determined above:
Sample Mass of carbon that combines with 1.00 g of oxygen
Compound 1 21.8 g / 58.2 g = 0.375
Compound 2 34.3 g / 45.7 g = 0.751
Third, determine the ratio of the masses of carbon between the two compounds.
- Divide the greater number by the smaller number:
- Ratio = 0.751 / 0.375 = 2.00 which in whole numbers is 2
Answer:
Fe + CuCl2 = FeCl2 + Cu
Explanation:
This is already balanced.
Answer:
for instance :
water , H²O , and hydrogen peroxide . H²O² , are alike
in that their respective molecules are composed of hydrogen and oxygen atomd . hope its helpful . Good luck :)
Answer:
addition polymerization
Explanation:
In addition polymerization, the monomers are simply joined to each other to form a polymer having the same empirical formula as the monomer but of higher relative molecular mass. The monomers in addition polymerization are usually simple unsaturated molecules such as alkenes.
We can deduce the reaction to be an addition polymerization because of the the attachment of n to both the unsaturated monomer and the saturated polymer without the loss of any small molecule. If it was a condensation polymerization, there would have been an accompanying loss of a small molecule such as water.