Use the equation for density :
Density = mass / volume
Density = 120 / 480
Density = 0.25
140 g of nitrogen (N₂)
Explanation:
We have the following chemical equation:
N₂ + 3 H₂ -- > 2 NH₃
Now, to find the number of moles of ammonia we use the Avogadro's number:
if 1 mole of ammonia contains 6.022 × 10²³ molecules
then X moles of ammonia contains 6.022 × 10²⁴ molecules
X = (1 × 6.022 × 10²⁴) / 6.022 × 10²³
X = 10 moles of ammonia
Taking in account the chemical reaction we devise the following reasoning:
If 1 mole of nitrogen produces 2 moles of ammonia
then Y moles of nitrogen produces 10 moles of ammonia
Y = (1 × 10) / 2
Y = 5 moles of nitrogen
number of moles = mass / molecular weight
mass = number of moles × molecular weight
mass of nitrogen (N₂) = 5 × 28 = 140 g
Learn more about:
Avogadro's number
brainly.com/question/13772315
#learnwithBrainly
First we have to refer
to the reaction between the acid and the base: <span>
H2SO4 + 2 NaHCO3 ---> 2 H2O + 2 CO2 + Na2SO4
From this balanced equation we can see that for every 1 mol
of acid (H2SO4), we need 2 mol of base (NaHCO3) to neutralize it. Given 28 ml
of 5.8 M acid, we need to find out how many mols of acid that is:
<span>28mL * (1L/1000mL) * 5.8 mol/L = 0.1624 mol H2SO4</span></span>
<span>
Since we need 2 mol of base per mol of acid, we need:</span>
<span> 2*0.1624 mol = 0.3248 mol NaHCO3 </span><span>
MolarMass of NaHCO3 is 84.01 g/mol
<span>0.3248 mol*(84.01g/mol) = 27.29 g NaHCO3</span></span>
Answer:
The answer is "Auger".
Explanation:
The Auger effect is an effect size when the vacancy of even an atom throughout the inner shell was complemented by the release of even an electron from the same atom. Whenever a central electron is lost, a higher energy level electron can drop into the void and release energy, which can be the result.