Enzymes are organic catalysts
and catalysts generally increase rate of reaction by lowering activation energy
C is the answer
Answer:
Test tube one is a compound because it is 2 elements combine..Test tube to is an element
Explanation:
The given equilibrium reaction is,

The given reaction is exothermic. So, heat energy will be a product. Therefore, decreasing the temperature (heat energy) would lead to the formation of more products as when the amount of energy which is a product is reduced, there is more room for the products to form.
Increasing the pressure would shift the equilibrium towards that side which has least number of moles of the gaseous substance. Hence, here increasing the pressure would lead to the formation of more products by shifting the equilibrium towards the right side.
Decreasing the volume would make the equilibrium shift towards the least number of moles of the gaseous substance. So, here in this equilibrium decreasing the volume would lead to the formation of more products.
Since the half-reaction is occurring in a basic solution, add 32OH− to each side of the equation to eliminate the H+ ions.
P₄ +16H₂O + 32OH⁻ ⟶ 4PO₃⁻⁴ + 32H⁺ +32OH⁻
Final reaction :
P₄ + 32OH⁻ ⟶ 4PO₃⁻⁴ + 16H₂O + 20e⁻
A half reaction is either the oxidation or reduction reaction component of a redox reaction. A half reaction is obtained by considering the change in oxidation states of individual substances involved in the redox reaction.
The concept of half-reactions is used to describe what occurs in an electrochemical cell, such as a Galvanic cell battery. Half-reactions can be written to describe both the metal undergoing oxidation (known as the anode) and the metal undergoing reduction (known as the cathode).
Half-reactions are often used as a method of balancing redox reactions. For oxidation-reduction reactions in acidic conditions, after balancing the atoms and oxidation numbers, one will need to add H+ ions to balance the hydrogen ions in the half reaction.
For oxidation-reduction reactions in basic conditions, after balancing the atoms and oxidation numbers, first treat it as an acidic solution and then add OH- ions to balance the H+ ions in the half reactions (which would give H2O).
Learn more about Half reactions here : brainly.com/question/2491738
#SPJ4
Answer:
The mass of the jar and contents remained the same after the metal was burned.
Explanation:
My prediction about the experimental results is that the mass of the jar and contents remained the same after the metal was burned in the jar.
This is compliance with the law of conservation of mass which states that in a chemical reaction, matter is neither created nor destroyed by bonds are rearranged for new compounds to form.
- In compliance with this law, it is expected that the mass of the jar and its content will remain the same before and after the reaction.
- No new material was added and no material was removed from the jar.