Answer:18.02 grams
The average mass of one mole of H2O is 18.02 grams.
Explanation: we need to find the moles of water in 1 L of water or 1000mL of water. Taking the density of water to be 1g/mL, 1000mL of water= 1000g water.
Therefore, number of moles= given mass of water(1000)/molecular mass of water(18)
Moles =1000/18= 55.55
So total molecules in 55.55 moles= 55.55* 6.022*10^23 = 334.52*10^23 molecules
=3.34*10^25 molecules of water.
:)
Answer:
There are 18572.9 arcminutes in 86% of a circle.
Explanation:
The degrees in 86% of a circle is:
Now, we need to find the number of arcminutes in 309.6°:
Therefore, there are 18572.9 arcminutes in 86% of a circle.
I hope it helps you!
Answer:
Kp = \frac{P(NH_{3}) ^{4} P(O_{2}) ^{5}}{P(NO) ^{4} P(H_{2}O)^{6}}
Explanation:
First, we have to write the balanced chemical equation for the reaction. Nitrogen monoxide (NO) reacts with water (H₂O) to give ammonia (NH₃) and oxygen (O₂), according to the following:
NO(g) + H₂O(g) → NH₃(g) + O₂(g)
To balance the equation, we add the stoichiometric coefficients (4 for NH₃ and NO to balance N atoms, then 6 for H₂O to balance H atoms and then 5 for O₂ to balance O atoms):
4 NO(g) + 6 H₂O(g) → 4 NH₃(g) + 5 O₂(g)
All reactants and products are in the gaseous phase, so the equilibrium constant is expressed in terms of partial pressures (P) and is denoted as Kp. The Kp is expressed as the product of the reaction products (NH₃ and O₃) raised by their stoichiometric coefficients (4 and 5, respectively) divided into the product of the reaction reagents (NO and H₂O) raised by their stoichiometric coefficients (4 and 6, respectively). So, the pressure equilibrium constant expression is written as follows: