Answer:
Explanation:
<u>Given the following data;</u>
Initial volume = 400 mL
Final volume = 2000 mL
Initial pressure = 3 atm
To find the final pressure P2, we would use Boyles' law.
Boyles states that when the temperature of an ideal gas is kept constant, the pressure of the gas is inversely proportional to the volume occupied by the gas.
Mathematically, Boyles law is given by;
Substituting into the equation, we have;
ΔSsys and ΔSsurr both have values larger than 0.
<h3>Entropy Change: What Is It?</h3>
- Entropy change is a phenomena that measures the evolution of randomness or disorder in a thermodynamic system.
- It has to do with how heat or enthalpy is converted during work.
- More unpredictability in a thermodynamic system indicates high entropy.
- Heat transport (delta Q) divided by temperature equals the change in entropy (delta S).
<h3>What causes variations in entropy?</h3>
- When a substance is divided into several pieces, entropy rises.
- Because the solute particles are split apart when a solution is generated, the dissolving process increases entropy.
- As the temperature rises, entropy increases.
learn more about entropy change here
brainly.com/question/6364271
#SPJ4
A native metal is any metal that is found<span> in its metallic </span>form<span>, either </span>pure<span> or as an alloy, in </span>nature<span>. ... Over geological time scales, very few metals can resist natural weathering processes ! hope i helped!</span>
Answer:
9.8g
Explanation:
Using periodic table find molar mass of C and H:
C=12.01g/mol
H=1.008g/mol
Molar mass of C2H4=(12.01)2+(1.008)4=28.03g/mol
Using molar mass times moles of the chemical to find the mass in 0.35 moles of c2h4:
28.03 x 0.35=9.8grams