Answer:
0.01836 M
Explanation:
Again the reaction equation is;
Fe(s) + Mn2+(aq) → Fe2+(aq) + Mn(s)
E°cell= 0.77 V
Ecell= 0.78 V
[Mn2+] = 0.040 M
[Fe2+] = the unknown
n=2
From Nernst's equation;
Ecell= E°cell- 0.0592/n log Q
0.78= 0.77 - 0.0592/2 log [Fe2+] /[0.040]
0.78-0.77= - 0.0592/2 log [Fe2+] /[0.040]
0.01/ -0.0296= log [Fe2+] /[0.040]
-0.3378= log [Fe2+] /[0.040]
Antilog(-0.3378) = [Fe2+] /[0.040]
0.459= [Fe2+] /[0.040]
[Fe2+] = 0.459 × 0.040
[Fe2+] = 0.01836 M
Explanation:
We leave a soda in the car overnight and the temperature dips to 25 °F. To see if it will freeze we have to convert the °F to °C.
T(°C) = ( T(°F) - 32 ) *5/9
T(°C) = (25 - 32) *5/9
T(°C) = -3.9 °C
Since -3.9 °C is a temperature greater than the freezing point (-4.5 °C) the soda won't freeze.
Answer: The soda won't freeze.
Explanation:
The location of a body with reference to a given point.
Answer:
2–butyne.
Explanation:
To name the compound given above, we must determine the following:
1. Determine the functional group of the compound.
2. Determine the longest continuous carbon chain. This gives the parent name of the compound.
3. Locate the position of the functional group by giving it the lowest possible count.
4. Combine the above to obtain the name.
Thus, we shall name the compound as follow:
1. The compound contains triple bond (C≡C). Therefore, the compound is an alkyne.
2. The longest chain is carbon 4. Thus the parent is butyne.
3. The triple bond (C≡C) is located at carbon 2 when we count from either side.
4. The name of the compound is:
2–butyne