People would rush to the store to buy supplies and there might not be enough for the "last minute noticed" people
Elements and compounds. This is because in solutions and mixtures the substances are not bonded to each other or pure, you can separate and purify substances in solutions and mixtures (via techniques such as distillation, filtering) but you cannot separate compounds as they are bonded together.
Answer: The mass of the sample will be 1417.7 grams.
Explanation:
We are given:

This means that 1 mole of NaCl has an enthalpy of fusion of 30.2 kJ
1 mole of NaCl has a mass of 58.44 grams.
So, 30.2 kJ of heat is require for a mass 58.44 grams of NaCl
So, 732.6 kJ of heat will be required for =
= 1417.65 grams of NaCl.
Hence, the mass of NaCl sample will be 1417.7 grams.
Answer:
1) The value of Kc:
C. remains the same.
2) The value of Qc:
A. is greater than Kc.
3) The reaction must:
B. run in the reverse direction to restablish equilibrium.
4) The concentration of N2 will:
B. decrease.
Explanation:
Hello,
In this case, by means of the Le Chatelier's principle which is based on the shift a chemical reaction could have under some modifications, we have:
1) The value of Kc:
C. remains the same, since it just depend the reaction's thermodynamics as it is computed via:

2) The value of Qc:
A. is greater than Kc, since the reaction quotient is:
![Qc=\frac{[N_2][H_2]^3}{[NH_3]^2}](https://tex.z-dn.net/?f=Qc%3D%5Cfrac%7B%5BN_2%5D%5BH_2%5D%5E3%7D%7B%5BNH_3%5D%5E2%7D)
Thus, the lower the concentration of ammonia, the higher Qc, making Qc>Kc.
3) The reaction must:
B. run in the reverse direction to restablish equilibrium, since ammonia was withdrawn and should be regenerated to reach the equilibrium.
4) The concentration of N2 will:
B. decrease, since less reactant is forming the products.
Best regards.