Answer:
θ = sin⁻¹
Explanation:
From one of the equations of motion, v² = u² + 2as.......... equation 1
Since the object thrown was moving against gravity, then the acceleration, a would change to -g and the initial velocity u would change to V₀ sin θ because the object is travelling at angle of θ to the horizontal. By inputting all these parameter into equation 1, we would arrive at:
v² = (u sin θ)² - 2gd
(u sin θ)² = 2gd
d = (u sin θ)²/2g
sin² θ = 2gd
sin θ = 
θ = sin⁻¹ 
Both magnitude and DIRECTION
For example,
• 12m East
• -2 miles
•9 meter north
• 8 miles up
Explanation:
The gravitational force equation is the following:

Where:
G = Gravitational constant = 
m1 & m2 = the mass of two related objects
r = distance between the two related objects
The problem gives you everything you need to plug into the formula, except for the gravitational constant. Let me know if you need further clarification.
Answer
given,
mass of satellite = 545 Kg
R = 6.4 x 10⁶ m
H = 2 x 6.4 x 10⁶ m
Mass of earth = 5.972 x 10²⁴ Kg
height above earth is equal to earth's mean radius
a) satellite's orbital velocity
centripetal force acting on satellite = 
gravitational force = 
equating both the above equation



v = 5578.5 m/s
b) 


T = 14416.92 s

T = 4 hr
c) gravitational force acting


F = 5202 N
Answer:
2.7
Explanation:
The following data were obtained from the question:
Mass (m) of box = 100 Kg
Length (L) of ramp = 4 m
Height (H) of ramp = 1.5 m
Mechanical advantage (MA) of ramp =?
Mechanical advantage of a ramp is simply defined as the ratio of the length of the ramp to the height of the ramp. Mathematically, it is given by:
Mechanical Advantage = Lenght / height
MA= L/H
With the above formula, we can obtain the mechanical advantage of the ramp as follow:
Length (L) of ramp = 4 m
Height (H) of ramp = 1.5 m
Mechanical advantage (MA) of ramp =?
MA = 4/1.5
MA = 2.7
Therefore, the mechanical advantage of the ramp is 2.7