Properties of electromagnetic radiation and photons. ... we find the types of energy that are lower in frequency ( and thus longer in wavelength) than visible light. Seeee
Answer:
d= 794.4 cmExplanation:
Given that
Speed ,V= 286 km/h

V=79.44 m/s
Given that time ,t= 100 ms
t= 0.1 s
We know that ( if acceleration is zero)
Distance = Speed x time
d= V t
Now by putting the values in the above equation
d = 79.44 x 0.1 m
d= 7.944 m
We know that 1 m = 100 cm
d= 794.4 cm
Answer:
We know that the speed of sound is 343 m/s in air
we are also given the distance of the boat from the shore
From the provided data, we can easily find the time taken by the sound to reach the shore using the second equation of motion
s = ut + 1/2 at²
since the acceleration of sound is 0:
s = ut + 1/2 (0)t²
s = ut <em>(here, u is the speed of sound , s is the distance travelled and t is the time taken)</em>
Replacing the variables in the equation with the values we know
1200 = 343 * t
t = 1200 / 343
t = 3.5 seconds (approx)
Therefore, the sound of the gun will be heard at the shore, 3.5 seconds after being fired
Answer:

Explanation:
We can use the following kinematics equations to solve this problem:
.
Using the first one to solve for acceleration:
.
Now we can use the second equation to solve for the distance travelled by the airplane:
(three significant figures).