Answer:
Yes. (see below)
Step-by-step explanation:
First, find the slope of the line. You can do that by using the slope formula:
y2 - y1
m = ----------
x2 - x1
Now, choose any two points from the line to plug in. I'm using the points (0, 3) and (2, 4).
4 - 3
m = ------
2 - 0
1
m = --- = 1/2
2
Now, to simplify your situation, you can use the slope-intercept formula. To use this, you first need to find the slope and y-intercept.
The y-intercept is where the line meets the y-axis, which is (0, 3), so the y-intercept is 3.
Now, plug them in:
y = mx + b
y = 1/2x + 3
To see if a specific point is on this line—which, in this case, is (20, 13), plug them in and simplify to see if it's true:
13 = 1/2 (20) + 3
13 = 10 + 3
13 = 13
This is true, so the point (20, 13) is on this line.
Answer:
burritos cost $2.19. Michael spent a total of $42.93 at the
restaurant to buy food for a party. If he purchased half as
many burritos as tacos, how many tacos did he buy?
tanong mo sa lela mong panot
Step-by-step explanation:
To solve this problem, first total Benito's operating expenses which is equal to operating expenses = $832 + $177 + $140 = $1,149. Then subtract it from the total expenses to get the cost of gasoline. Cost of gasoline = $1,743 - $1,149 = $594. Then, divide the gasoline cost with the total miles Benito drove to get the <span>average cost of the gasoline per mile. So, average cost of gasoline per mile = </span>$594/<span>8,871 miles = $0.067 or 6.70 cents. Answer is B.</span>
The answer is D. If you cut it into thirds each teacher would get at least two pieces.
Basado en la existencia de un triángulo <em>rectángulo</em> y la relación entre ángulos <em>externos</em> e <em>internos</em>, se tiene que las medidas de los ángulos <em>internos</em> son 60° y 30°, respectivamente.
<h3>¿Cómo determinar a partir de un ángulo externo los ángulos internos de un triángulo rectángulo?</h3>
Un triángulo <em>rectángulo</em> es un triángulo que contiene un ángulo <em>recto</em> y dos ángulos <em>agudos</em> como ángulos <em>internos</em>. Por otra parte, la suma del ángulo <em>externo</em> y el ángulo <em>interno</em> contiguo son ángulos <em>suplementarios</em>. Dos ángulos <em>suplementarios</em> son aquellos cuya suma es igual a 180°.
De acuerdo con el enunciado, el ángulo <em>externo</em> es un ángulo <em>obtuso</em> y, en consecuencia, el ángulo <em>interno contiguo</em> es un ángulo <em>agudo</em>. A continuación, emprendemos los cálculos requeridos:
m ∠A = 180 - m ∠A'
m ∠A = 180° - 120°
m ∠A = 60°
m ∠B = 90°
m ∠C = 180° - m ∠B - m ∠A
m ∠C = 180° - 90° - 60°
m ∠C = 30°
Basado en la existencia de un triángulo <em>rectángulo</em> y la relación entre ángulos <em>externos</em> e <em>internos</em>, se tiene que las medidas de los ángulos <em>internos</em> son 60° y 30°, respectivamente.
Para aprender más sobre ángulos externos: brainly.com/question/21357517
#SPJ1