Answer:
90 N
Explanation:
The electrostatic force between two charges is given by:

where
k is the Coulomb's constant
q1, q2 are the two charges
r is the separation between the charges
In this problem we have
q1 = q2 = 0.005 C
r = 50 m
So the electrostatic force is

Answer: a) 73.41 10^-12 F; b)4.83* 10^3 N/C; c) 3.66 *10^3 N/C
Explanation: To solve this problem we have to consider the following: The Capacity= Charge/Potential Difference
As we know the capacity is value that depend on the geometry of the capacitor, in our case two concentric spheres.
So Potential Difference between the spheres is given by:
ΔV=-
Where E = k*Q/ r^2
so we have 
then
Vb-Va=k*Q(1/b-1/a)=kQ (ab/b-a)
Finally using C=Q/ΔV=ab/(k(b-a))
To caclulate the electric firld we first obtain the charge
Q=ΔV*C=120 V*73.41 10^-12 F=8.8 10^-9 C
so E=KQ/r^2 for both values of r
r=12.8 cm ( in meters)
r2=14.7 cm
E(r1)=4.83* 10^3 N/C
E(r2)=3.66 *10^3 N/C
Answer: The reason a light bulb glows is that electricity is forced through tungsten, which is a resistor. The energy is released as light and heat. A conductor is the opposite of a resistor. Electricity travels easily and efficiently through a conductor, with almost no other energy released as it passes.
Explanation:
Probably 90 j but im not sure I haven’t done any work like this in a while