Answer:
D. Meters/Seconds
Explanation:
The time period of a wave is measured in seconds.
A typical wave involves both time and distance. Consider a sound wave, which is basically a periodic modulation of the local air pressure. We "hear" the sound because our ears respond to the variations of pressure.
The most common metric of a sound wave is frequency. This is the rate at which the change in pressure occurs, and is measured in cycles per second, formally known as "hertz". The period is the inverse of frequency andl has the units of seconds per cycle, commonly stated simply as seconds.
It will take 267 milliseconds for a sample of radon-218 to decay from 99 grams to 0. 50 grams.
We know that half life of a first order reaction is given by: 
where k = rate of reaction
Given half life = 35 milliseconds
So from this we get k = 0.0198
Now we know that rate of first order reaction is given by: 
where t= time
R'= initial amount = 99 g
R= final amount= 0.50 g
k= rate of reaction = 0.0198
Putting values of these in above equation we get t=267 milliseconds.
i.e. It will take 267 milliseconds for a sample of radon-218 to decay from 99 grams to 0. 50 grams.
To know more about radioactivity visit:
brainly.com/question/20039004
#SPJ4
(a) Zero
The maximum efficiency (Carnot efficiency) of a heat engine is given by

where
is the low-temperature reservoir
is the high-temperature reservoir
For the heat engine in the problem, we have:


Therefore, the maximum efficiency is

(b) Zero
The efficiency of a heat engine can also be rewritten as

where
W is the work performed by the engine
is the heat absorbed from the high-temperature reservoir
In this problem, we know

Therefore, since the term
cannot be equal to infinity, the numerator of the fraction must be zero as well, which means
W = 0
So the engine cannot perform any work.