Answer:
A thin, taut string tied at both ends and oscillating in its third harmonic has its shape described by the equation y(x,t)=(5.60cm)sin[(0.0340rad/cm)x]sin[(50.0rad/s)t]y(x,t)=(5.60cm)sin[(0.0340rad/cm)x]sin[(50.0rad/s)t], where the origin is at the left end of the string, the x-axis is along the string, and the y-axis is perpendicular to the string. (a) Draw a sketch that shows the standing-wave pattern. (b) Find the amplitude of the two traveling waves that make up this standing wave. (c) What is the length of the string? (d) Find the wavelength, frequency, period, and speed of the traveling waves. (e) Find the maximum transverse speed of a point on the string. (f) What would be the equation y(x, t) for this string if it were vibrating in its eighth harmonic?
Answer:
Electrons are located in specific orbit corresponding to discrete energy levels
Explanation:
In Bohr's model of the atom, electron orbit the nucleus in specific levels, each of them corresponding to a specific energy. The electrons cannot be located in the space between two levels: this means that only some values of energy are possible for the electrons, so the energy levels are quantized.
A confirmation of Bohr's model is found in the spectrum of emission of gases. In fact, when an electron jumps from a higher energy level to a lower energy level, it emits a photon whose energy is exactly equal to the difference in energy between the two levels: since the energy levels are discrete, this means that the emitted photons cannot have any value of wavelength, but also their wavelength will appear as a discrete spectrum. This is exactly what it is observed in the spectrum of emission of gases.
Wavelength is measured in various units of distance (mm, cm, m, etc.). Frequency uses hertz, but that is not what the question is asking. Therefore, the answer is false.
B. It's an example of velocity due to the fact that it has a measurement of speed, divided by time, and has a specific direction. Acceleration doesn't have any direction on it, but has speed divided by time. C and D have a different mode of measurement despite of the fact that it still needs meters/miles/km.