The answer would be 76.752 .
Answer:
Δ S = 93.8 J/mol-K
Explanation:
Given,
Boiling point of chloroform = 61.7 °C
= 273 + 61.7 = 334.7 K.
Enthalapy of vapourization = 31.4 kJ/mol.
Using Gibbs free energy equation
Δ G = Δ H - T (ΔS)
at equilibrium (when the liquid is boiling), Δ G = 0
so, 0 = ΔH - T (Δ S)
T (Δ S) = Δ H
and ΔS = ΔH / T
Δ S = (31400 J/mol.) / 334.7 K
Δ S = 93.8 J/mol-K
Answer:
they all have the same amount of kinetic energy
The answer would be B, an electron because the proton is positive, neutron is neutral, and the nucleus is the center of the atom.
<h3><u>Answer;</u></h3>
0.5 M HBr, pOH = 13.5 ; Has the lowest pH
<h3><u>Explanation;</u></h3>
From the question;
pH = -Log [OH]
or pH = 14 - pOH
Therefore;
For 0.5 M HBr
[H+] = 0.5 M
pH = - Log [0.5]
= 0.30
For; pOH = 13.5
pH = 14 - pOH
= 14 -13.5
= 0.5
For; 0.05 M HCl
pH = - log [H+]
[H+] = 0.05
pH = - Log [0.05]
= 1.30
For; pOH = 12.7
pH = 14 -pOH
= 14 -12.7
= 1.30
For; 0.005 M KOH,
pOH = - log [OH]
[OH-] = 0.005
pOH = - Log 0.005
= 2.30
pH = 14 - 2.30
= 11.7
For; pOH = 2.3
pH = 14 -pOH
= 14- 2.3
= 11.7