Answer:
5 moles of Fe(II) are required to react completely with the 5 moles of Sulphur
Explanation:
The balanced equation in this question is
Iron + Sulfur = Iron(II) Sulfide
Fe (II) + S --> Fe(II)S
Thus one mole of sulfur reacts with one mole of Fe(II)
Hence, 5 moles of Fe(II) are required to react completely with the 5 moles of Sulphur
Answer:
i) B
ii) D
Explanation:
<em>Bond length is determined by the size of the atoms involved and the bond order </em>
A) C-I
B) H-I
answer : H-I has the shortest bond length because H has an electronegativity value of 2.2 while C has an electronegativity value of 2.5 hence the bond between H-I is greater than C - I due the electronegativity difference between H-I is greater as well.
C) H-Cl
D) H-I
answer : H-Cl has the shortest bond length due the electronegativity difference between H-CI is greater as well.
Answer:
I think the answer is B or Compounds
Answer:
The melting and boiling points of molecular compounds are generally quite low compared to those of ionic compounds. This is because the energy required to disrupt the intermolecular forces between molecules is far less than the energy required to break the ionic bonds in a crystalline ionic compound
Answer:
CO(g) + 2H₂(g) → CH₃OH(l)
Explanation:
Carbon monoxide has molecular formula CO, molecular hydrogen has formula H₂, and methanol is CH₃OH.
The reactants are CO and H₂ and the product CH₃OH:
CO(g) + H₂(g) → CH₃OH(l)
To balance the equation, the elements must have the same amount on each side. C and O are balanced, but there is 4H in the product and only 2 in the reactant, so we multiply H₂ for 2:
CO(g) + 2H₂(g) → CH₃OH(l)
And the equation is balanced.