Step 1: Change density from g/mL to g/L;
0.807 g/mL = 807 g/L
Step 2: Find Moles of N₂;
As,
Density = Mass / Volume
Or,
Mass = Density × Volume
Putting Values,
Mass = 807 g/L × 1 L
Mass = 807 g
Also,
Moles = Mass / M.mass
Putting values,
Moles = 807 g / 28 g.mol⁻¹
Moles = 28.82 moles
Step 3: Apply Ideal Gas Equation to Find Volume of gas occupied,
As,
P V = n R T
V = n R T / P
Putting Values, remember! don't forget to change temperatue into Kelvin (25 °C + 273 = 298 K)
V = (28.82 mol × 0.08206 atm.L.mol⁻¹.K⁻¹ × 298 K) ÷ 1 atm
V = 704.76 L
Answer:

Explanation:
Hello!
In this case, since the combustion reaction of methanol is:

In such a way, since there is 1:3/2 mole ratio between methanol and oxygen, we can compute the moles of oxygen that are needed to burn 2.56 moles of methanol as shown below:

Best regards!
Answer:
290 grams
Explanation:
Let's begin by writing the balanced chemical equations:

Then we calculate the number of moles in 97g of propane.
n(propane)=
According to the balanced chemical equation, one mole of propane produces 3 moles of carbon dioxide. So the available number of moles of propane must be multiplied by three to work out the number of carbon dioxide produced.
n(carbon dioxide)= 2.1995mol*3 = 6.5985mol
mass(carbon dioxide) = moles * molar mass
= 6.5985 mol * 44.01 g/mol
= 290 grams
Answer:
2.89 g/cm^3
Explanation:
Since density equals mass over volume (or also seen as
), simply divide 66.5 grams by 23.0 cm. This will output an answer of 2.89 g/cm^3.