The answer would be electronegativity
Answer:
NaHCO3 = No. of atoms are 1 sodium + 1 Hydrogen + 1 carbon + 3 oxygens = 6 atoms per molecule.
Answer:-
As we can see from the graphical data,
The distance covered by all the four runners is the same 5 km.
Among the four athletes, Athlete P covers the distance in under three hours.
It is the minimum time taken among the four athletes.
Thus Athlete P covers the 5 km distance in the minimum amount of time.
We know that speed = 
Since time taken for P is minimum, his speed is the maximum. P ran the fastest.
Time taken by Q = 4.5 hours.
Speed of Q = 
= 
= 1.1 km/ hr
Time taken by R = 6 hours.
Speed of R = 
= 
= 0.8 km/ hr
An orbital that penetrates into the region occupied by core electrons is less shielded from nuclear charge than an orbital that does not penetrate and therefore has a lower energy.
Explanation:
The only true statement from the given options is that "an orbital that penetrates into the region occupied by core electrons is less shielded from nuclear charge than an orbital that does not penetrate and therefore has a lower energy." Inner orbitals which are also known to contain core electrons feels the bulk of the nuclear pull on them compared to the outermost orbitals containing the valence electrons.
- The nuclear pull is the effect of the nucleus pulling and attracting the electrons in orbitals.
- This pull is stronger for inner orbitals and weak on the outer ones.
- The outer orbitals are said to be well shielded from the pull of the nuclear charge.
- Also, based on the quantum theory, electrons in the outer orbitals have higher energies because they occupy orbitals at having higher energy value.
Learn more:
brainly.com/question/1832385
#learnmoreBrainly
Answer:
C. 100.7 amu
Explanation:
Isotopes of an element are atoms of an element with the same atomic number but different atomic masses. Each atomic mass of an isotope is known as an isotopic mass. An element that exhibits isotope, that is, that have two or more isotopes has a relative atomic mass that is not a whole number.
Relative atomic mass of X is the sum of the products of the relative abundances of each isotope and its isotopic mass.
For Isotope ¹⁰⁰X: 30% × 100 = 30 amu
For Isotope ¹⁰¹X: 70% × 101 = 70.7 amu
Relative atomic mass of X = (30 + 70.7) amu = 100.7 amu
Therefore, the approximate atomic mass of X is 100.7 amu