Answer:
the spotlight effect.
Explanation:
The spotlight effect is a tendency to think that people get noticed more often than they really do. It is an overestimation of the situation regarding the concern of getting observed. It concerns the self-confidence of an individual. For example, an individual feels that everybody in a party would notice him for a bad pair of shoes while in reality, it does not concern them.
As per the question, the overestimation of people's reaction is known as the spotlight effect.
0.0102 moles Na₂CO₃ = 1.08g of Na₂CO₃ is necessary to reach stoichiometric quantities with cacl2.
<h3>Explanation:</h3>
Based on the reaction
CaCl₂ + Na₂CO₃ → 2NaCl + CaCO₃
1 mole of CaCl₂ reacts per mole of Na₂CO₃
we have to calculate how many moles of CaCl2•2H2O are present in 1.50 g
- We must calculate the moles of CaCl2•2H2O using its molar mass (147.0146g/mol) in order to answer this issue.
- These moles, which are equal to moles of CaCl2 and moles of Na2CO3, are required to obtain stoichiometric amounts.
- Then, we must use the molar mass of Na2CO3 (105.99g/mol) to determine the mass:
<h3>
Moles CaCl₂.2H₂O:</h3>
1.50g * (1mol / 147.0146g) = 0.0102 moles CaCl₂.2H₂O = 0.0102moles CaCl₂
Moles Na₂CO₃:
0.0102 moles Na₂CO₃
Mass Na₂CO₃:
0.0102 moles * (105.99g / mol) = 1.08g of Na₂CO₃ are present
Therefore, we can conclude that 0.0102 moles Na₂CO₃ is necessary.to reach stoichiometric quantities with cacl2.
To learn more about stoichiometric quantities visit:
<h3>
brainly.com/question/28174111</h3>
#SPJ4
0.92%. student calculated that the amount of NaCl that should form in the lab
Answer:
6.72 g
Explanation:
Given data:
Mass of calcium chlorate = 13.8 g
Mass of oxygen produced = ?
Solution:
Chemical equation:
Ca(ClO₃)₂ → CaCl₂ + 3O₂
Number of moles of calcium chlorate:
Number of moles = mass / molar mass
Number of moles = 13.8 g/ 206.98 g/mol
Number of moles = 0.07 mol
Now we will compare the moles of oxygen and calcium chlorate.
Ca(ClO₃)₂ : O₂
1 : 3
0.07 : 3×0.07=0.21 mol
Mass of oxygen:
Mass = number of moles × molar mass
Mass = 0.21 mol × 32 g/mol
Mass = 6.72 g