1) See attached figure
The relationship between charge and current is:
where
i is the current
Q is the charge
t is the time
Therefore, the current is the rate of change of the charge passing through a given point over time.
This means that for a graph of charge over time, the current is just equal to the slope of the graph.
For the graph in this problem:
- Between t = 0 and t = 2 s, the slope is

therefore the current is
i = 25 A
- Between t = 2 s and t = 6 s, the slope is

therefore the current is
i = -25 A
- Between t = 6 s and t = 8 s, the slope is

therefore the current is
i = 25 A
The figure attached show these values plotted on a graph.
2)
The previous equation can be rewritten as
This equation is valid if the current is constant: if the current is not constant, then the total charge is simply equal to the area under a current vs time graph.
Here we have the current vs time graph, so we gave to find the area under it.
The area of the first triangle is:

While the area of the second square is

So, the total area (and the total charge) is

Answer:
The kinetic energy of the car is 
Explanation:
Answer: E) A) salt water.
Explanation:
E) In equilibrium, pressure exerts equally in all directions, so for a given depth, the pressure is the same for all points located at the same depth, and it can be written as follows:
p = p₀ + ρ.g.h, where p₀ = atmospheric pressure, ρ=fluid density, h=depth from the surface.
A) The buoyant force, as discovered by Archimedes, is an upward force, that opposes to the weight of an object (as it is always downward), and is equal to the weight of the volume of the liquid that the object removes, which means that is proportional to the density of the liquid.
As salt water is denser than fresh water, the buoyant force exerted by the salt water is always greater than the one produced by the fresh water, so objects will float more easily in salt water than in fresh water.
In the limit, it is possible that one object float in salt water and sink in fresh water.
Behavior has at least six dimensions, which are: frequency, duration, latency, topography, locus, and force. Since the coach is recording how long it takes, the track coach is recording the duration behavior because duration is a synonym for time. Duration is your answer.