Answer:
50 degree.
Explanation:
Given that the components of vector A are given as follows: Ax = 5.6 Ay = -4.7
The angle between vector A and B in the positive direction of x-axis will be achieved by using the formula:
Tan Ø = Ay/Ax
Substitute Ay and Ax into the formula above.
Tan Ø = -4.7 / 5.6
Tan Ø = -0.839
Ø = tan^-1(-0. 839)
Ø = - 40 degree
Therefore, the angle between vector A and B positive direction of x-axis will be
90 - 40 = 50 degree.
Answer:
It's a pretty simple suvat linear projectile motion question, using the following equation and plugging in your values it's a pretty trivial calculation.
V^2=U^2+2*a*x
V=0 (as it is at max height)
U=30ms^-1 (initial speed)
a=-g /-9.8ms^-2 (as it is moving against gravity)
x is the variable you want to calculate (height)
0=30^2+2*(-9.8)*x
x=-30^2/2*-9.8
x=45.92m
Answer:
169.74 N
Explanation:
Given,
Mass of the girl = 30 Kg
angle of the rope with vertical, θ = 30°
equating the vertical component of the tension
vertical component of the tension is equal to the weight of the girl.
T cos θ = m g
T cos 30° = 30 x 9.8
T = 339.48 N
Tension on the two ropes is equal to 339.48 N
Tension in each of the rope = T/2
= 339.48/2 = 169.74 N
Hence, the tension in each of the rope is equal to 169.74 N
Answer:
66w
Explanation:
p=w/t
p=660/10
p=66
prolly a bad explanation but hope it helps...
Answer:
a. 20m/s
b.50N
c. Turkey has a larger mass than the ball. Neglible final acceleration and therefore remains stationery.
Explanation:
a. Given the force as 50N, times as 0.2seconds and the weight of the ball as 0.5 kg, it's final velocity can be calculated as:

Hence, the velocity of the ball after the kick is 20m/s
b.The force felt by the turkey:
#Applying Newton's 3rd Law of motion, opposite and equal reaction:
-The turkey felt a force of 50N but in the opposite direction to the same force felt by the ball.
c. Using the law of momentum conservation:
-Due to ther external forces exerted on the turkey, it remains stationery.
-The turkey has a larger mass than the ball. It will therefore have a negligible acceleration if any and thus remains stationery.
-Momentum is not conserved due to these external forces.