Electrical charges on one or more particles within the field cause the electric field
Each point in space has an electric field associated with it when a charge of any kind is present. The value of E, often known as the electric field strength, electric field intensity, or just the electric field, expresses the strength and direction of the electric field
A region of space surrounding an electrically charged particle or object known as an electric field is one in which an electric charge would experience force. A vector quantity called an electric field can be represented by arrows pointing in the direction of or away from charges. The force per unit charge exerted on a positive test charge that is at rest at a given position is the force per unit charge that is used to define the electric field analytically.
To learn more about electric field please visit - brainly.com/question/15800304
#SPJ1
The electric field is always perpendicular to the surface outside of a conductor. TRUE
<span> If an electron were placed on an electric field line, it would move in a direction perpendicular to the field. FALSE, it would move in an anti-parallel direction because its charge is negative </span>
<span>Electric field lines originate on positive charge and terminate on negative charge. TRUE ; but they can also go to infinity </span>
It is possible for two electric field lines to cross each other.
<span> Usually FALSE; though technically possible at special points where field is zero. </span>
If an electron and a positron were in the presence of a very strong electric field, they would move away from each other.
<span> TRUE; one is positive, and one is negative. If the field is strong enough, the action of the field will overcome the mutual attraction between them </span>
It is not possible for the electric field to ever be zero. FALSE: it IS possible, inside a conductor for instance
If a proton were placed on an electric field line, it would move in a direction anti-parallel to the field.
<span> FALSE: being positive, it would move in the SAME direction as the field</span>ic
So this is easy to calculate when you split the velocity into x and y components. The x component is going to equal cos(53) * 290 and the y component is going to equal sin(53)*290.
The x location therefore is 290*cos(53)*35 = 6108.4m
The y location needs to factor in the downwards acceleration of gravity too, which is 9.81m/s^2. We need the equation dist. = V initial*time + 0.5*acceleration*time^2.
This gives us d=290*sin(53)*35 + (0.5*-9.81*35^2)=2097.5m
So your (x,y) coordinates equals (6108.4, 2097.5)
If the amount of electrical energy is 50 Joules before the conversions, then it would be 50 Joules after the conversion.
According to law of conservation of energy, we cannot create or destroy energy so it remains constant
Hope this helps!
Answer:
The final velocity of the cart is
Explanation:
From the question we are told that
The mass of the girl is 
The mass of the cart is 
The speed of the cart and kid(girl) is 
The final velocity of the girl is 
Let assume that velocity eastward is positive and velocity westward is negative (Note that if we assume vise versa it wouldn't affect the answer )
The total momentum of the system before she steps off the back of the cart
is mathematically evaluated as

substituting values


The total momentum after she steps off the back of the cart is mathematically evaluated as

Where
is the final velocity of the cart
substituting values


Now according to the law of conservation of momentum

So

=> 
Since the value is positive it implies that the cart moved eastward