Answer:
H₀ = 1.6 x 10⁻¹⁸ s⁻¹
Explanation:
The Hubble's Constant can be found by the following formula:

where,
H₀ = Hubble's Constant = ?
v = speed of galaxy = 30000 km/s = 3 x 10⁷ m/s
D = Distacance = 600 Mpc = (6 x 10⁸ pc)(3.086 x 10¹⁶ m/1 pc)
D = 18.52 x 10²⁴ m
Therefore,

<u>H₀ = 1.6 x 10⁻¹⁸ s⁻¹</u>
Answer:
A
Explanation:
The weight is acting downwards where as the buoyant force acting upwards (opposite) direction with equal amount of force. so the opposite forces cancel out each other (because of the force amount being equal) and no net force is acting on the object.
Hope i have helped you
Thanks.
Answer:
Final Length = 30 cm
Explanation:
The relationship between the force applied on a string and its stretching length, within the elastic limit, is given by Hooke's Law:
F = kΔx
where,
F = Force applied
k = spring constant
Δx = change in length of spring
First, we find the spring constant of the spring. For this purpose, we have the following data:
F = 50 N
Δx = change in length = 25 cm - 20 cm = 5 cm = 0.05 m
Therefore,
50 N = k(0.05 m)
k = 50 N/0.05 m
k = 1000 N/m
Now, we find the change in its length for F = 100 N:
100 N = (1000 N/m)Δx
Δx = (100 N)/(1000 N/m)
Δx = 0.1 m = 10 cm
but,
Δx = Final Length - Initial Length
10 cm = Final Length - 20 cm
Final Length = 10 cm + 20 cm
<u>Final Length = 30 cm</u>
Answer: B
Explanation: i learned it last year
Answer: F = ma,
Explanation:
the most famous equation in physics, establishing an equivalence between energy and mass. But is this the most important equation in physics? Knowledgeable scientists will tell you no. The most important equation in physics is F = ma, also known as Newton's second law of mechanics.